
B-Smart
(Bremen Small Multi-Agent Robot Team)

Team Description for RoboCup 2009

Tim Laue1, Armin Burchardt2, Sebastian Fritsch2, Nils Göde2, Kamil Huhn2,
Teodosiy Kirilov2, Eyvaz Lyatif2, Markus Miezal2, Markus Modzelewski2,
Ulfert Nehmiz2, Malte Schwarting2, Andreas Seekircher2, Ruben Stein2

1 Deutsches Forschungszentrum für Künstliche Intelligenz GmbH,
Sichere Kognitive Systeme, Enrique-Schmidt-Str. 5, 28359 Bremen, Germany

2 Fachbereich 3 - Mathematik / Informatik
Universität Bremen, Postfach 330440, 28334 Bremen, Germany

grp-bsmarter@informatik.uni-bremen.de

Abstract. This paper documents the current technical state of B-Smart’s
hard- and software as well as upcoming changes in the near future. For
giving an overview, existing systems and their principles will be out-
lined briefly. Most texts concentrate on planned or already completed
modernizations which have been carried out since spring 2008.

1 Introduction

B-Smart is a project for computer science students in the advanced study period
at the Universität Bremen. The team is competing in the RoboCup Small Size
League, a technically simplified but fast and tactically challenging version of
robot football. After the RoboCup world championship in 2006, the project was
relaunched for another two years as a sequel to several similarly named projects.
Some of the team members decided after the projects official end (in fall 2008)
to continue developing and maintaining the hard- and software to participate in
the RoboCup 2009 in Graz. This would be the seventh participation in a row as
B-Smart has taken part in RoboCup competitions since 2003.

After some years of continuous redesigning, we have not significantly changed
the mechanical (cf. Sect. 2.1) as well as the electronic (cf. Sect. 2.2) design of
our robots during the last season. Our current platform has been considered as
being good enough for our purposes.

Nevertheless, our software has undergone several changes. The general archi-
tecture still consists of two main components: The Vision, which generates the
world model from image data, and the Agent, which makes decisions for robot
movement on the basis of this world model. Both applications consists of several
sub-components of which the most important ones are described in Sect. 3 and
Sect. 4.



a) b)

Fig. 1. a) Current B-Smart robot b) Cover of B-Smart robots

2 Hardware Architecture

2.1 Mechanical Design

The main chassis consists of two laser-cut aluminum plates, which are connected
by four motor mounts. The robots have a diameter of 177mm, their height is
144mm. The driving system consists of four wheels each having 36 subwheels.
The back wheels have an angle of 45◦ to the roll axis and the front wheels 53◦.
Each wheel is actuated by a Faulhaber 2342S006CR DC-Motor, connected with
gear wheels in a ratio of 12 : 1.

The robot has a low shot kicking mechanism for straight hard shoots and
low power passes. There is also a chipkick for high passes. Above the kicking
mechanism, a dribbler is mounted, which is driven by a Faulhaber 2224U006SR
DC-Motor and connected to the axis of the dribbler by an o-ring. To comply
with SSL rules, the dribbling system and the chassis conceal only 18 percent of
the ball.

A fully assembled robot is shown in Fig. 1a.

2.2 Electronic Design

The electronic design consists of four major components: The Foxboard, Rabbit-
board, Motorboard, and Kickerboard. This modular design is an advantage when
fast diagnostic of error-prone parts is needed. Furthermore, it offers the ability
of replacing damaged components with spare ones, so it is more likely to have a
broken robot repaired in a short period of time.

High-level control and communication is the main purpose of the Foxboard.
It runs an embedded Linux (http://www.acmesystems.it), which has been cus-
tomized to fulfill the higher latency requirements by the simultaneous use of the
three communication interfaces. Furthermore it can be used as a programmer
for updating the Rabbitboard ’s firmware without disassembling the robot.

The Rabbitboard controls the speed of the four motors with a 200Hz PID
control loop. Furthermore, it monitors all important hardware states, especially



the light-barrier which is used for accurate detection if the ball is ready to
be shot. The Atmega128 suits these needs well and is part of the board. The
Motorboard is used for driving and monitoring the four attached motors via
H-Bridges (VNH2SP30).

The Kickerboard is directly controlled by the Atmega128 on the Rabbit-
board. It charges one 2200µF capacitors to 200V. The chipkick and the normal
kicking-mechanism are activated by two high-power mosfets. The force of the
kick can therefore be varied from 0 to 8m/s by the microcontroller which opens
the mosfets for a certain time.

3 Vision

As almost every team in SSL does, a global vision system is used. Pictures from
two AVT Marlin F046C FireWire cameras are combined and pushed through a
pipeline of processing modules in order to provide an internal world model to
the other software components.

3.1 Image Processing

One of the features of our vision system is the flexible module for the computation
of the camera perspective. Theoretically, it is possible to place cameras on lower
angles than the standard 90 degrees, still being able to recognize all objects.

Our system also identifies regions of interest. The basic idea is to recognize
areas in the camera picture where the the robots or the ball could be. The
combination of three methods (information about previously detected blobs,
difference of two pictures, and detection of contrast regions) provides a stable
identification of regions where possible objects can be recognized later. This
process reduces the amount of false blob detections and minimizes data needed
for follow-up calculations.

We use a HSV based color segmentation approach for detecting robot blobs
and the ball. The HSV color model provides a more stable color classification
when used in environments with changing luminosity (e.g. dynamic highlights
and shadows on the field). This is due to the fact that the hue component of the
physical object color stays relatively constant when the light intensity falling on
it changes. To perform color segmentation, a Fast Fourier Transformation of the
picture is used to set thresholds in each color class and to build a look-up table
used later for real-time color classification.

Our circular cover (cf. Fig. 1b) consists of four colored areas of the same size.
The order of the colors (black, white, magenta, green) encodes the ID, whereas
the black field is located left of the front to indicate the robot’s orientation.
Furthermore, to ensure a reliable detection of the marker’s center, a black ring
separates the four fields from the center blob.



Fig. 2. Comparison of direct camera measurement and filtered value while performing
sinus-shaped movement in y-direction

3.2 Smoothing of velocity measurements with particle filters

In previous years, the velocity of the ball and the robots was measured by plain
differences of positions in a certain time. This is sufficient to gain a rough es-
timate but leads to problems when algorithms like path finding or behavior
routines depend on this value. Reasons for this inaccuracy can be found in the
noise of the compressed image data with small resolution and changing light-
ing conditions. Moreover, these effects are amplified by slight miscalculations or
improper software configurations. Changes of only a few pixels in position can
cause big noise on the velocity value.

To reduce the above mentioned effects, a compensation algorithm was imple-
mented. The idea was to feed one filter for each object to track with continuous
position data. Based on those measurements and precise time stamps on each
picture, the algorithm is able to estimate the position of the moving object. Of
central importance for this algorithm are the multiple instances of the object
which are tracked over time. Each one is initialized with the measured position
and added random gaussian noise to simulate the uncertainty of the camera
measurement. After this, a velocity vector is determined by pure random noise.
Now the second measurement is awaited and every virtual state gets moved as if
his position and velocity were true for the passed amount of time. The resulting
state is now compared with the real measured one and rated accordingly.



Some cycles later, the virtual states by this converge towards the real state
and smooth its changes as one outlier is not able to invalidate the whole set of
virtual states. Nevertheless, this convergence also tends to result in problems
with high dynamic environments where spontaneous changes in the estimated
value, velocity in this case, are likely to happen. Unfortunately, exactly this is
what happens if a small size robot just stops in a few milliseconds due to strong
motors. To solve this, approaches such as particle injection are utilised. Thereby,
in every step some particles are generated from direct camera measurement or
hypothetical engine stops. This grants the filter the ability to react faster on
sudden changes while estimating not too many states and keep good performance
[1].

The analysis of the implemented filter revealed that there is a high potential
for smoothing the ugly measurements used until now (cf. Fig. 2). However there
are certain drawbacks which might get solved by further refinement of the imple-
mentation. This involves e.g. a delayed estimation of up to two frames produced
by the converging principle of this method. It might be possible to overcome this
by adding additional measurements of motor data and artificially increase the
amount of passed time during the estimation of new states. Furthermore, the fil-
ter needs many parameters e.g. for noise values or certain thresholds. Resulting
from this, the overall filter performance may vary heavily.

4 Agent

The Agent provides the artificial intelligence part of our software system. It
receives an abstract representation of the world (world model) and calculates
motion vectors for each robot of the own team. In order to aid debugging, the
application is divided into three basic module groups: pre-behavior, behavior and
post-behavior (Fig. 3).

The pre-behavior modules execute calculations based on the world model
and valid for every agent.They may also modify the world model e.g in order
to handle removed or defected robots and avoid their inclusion in the strategy
calculations.

The behavior modules calculate the desired move for each robot, based on
the data provided by the world model and the pre-behavior modules. The used
approach is based on XABSL, which is described shortly in the next section. A
new addition are subsidiary modules which try to rate the strategy and improve
the decisions taken (see sect. 4.4, 4.5).

The third group, the post-behavior modules, processes the results of the be-
havior execution and converts them to robot commands. The processing is done
per robot and includes control, path-planning and obstacle avoidance.

The last step is to queue the robot commands for sending through the com-
munication module



Fig. 3. Main loop structure of the agent software

4.1 Behavior Control and XABSL

The Extensible Agent Behavior Specification Language (XABSL) [2] is an XML-
based behavior description language which can be used to describe behaviors
of autonomous agents. It simplifies the process of specifying complex behaviors
and supports the design of both very reactive and long term oriented behaviors.
It uses hierarchies of behavior modules that contain state machines for decision
making. XABSL has been successfully applied in the Four-Legged League by the
GermanTeam [3].

Behaviors are specified in a C-like programming language and transformed to
an intermediate code which is interpreted by the XABSL engine. This shortens
the system’s compile time, allows more effective behavior development, and be-
comes very handy when changes have to be applied in the halftime of a running
game.

After traversion of the XABSL trees a destination position is available to
each agent.

4.2 Path-Planning

The path-planning system is based on the “Real-Time Randomized Path Plan-
ning for Robot Navigation” approach by Bruce and Veloso [4]. This approach has
been used several years by the team CMDragons. The system is a combination
of path-planning with RRT (Rapidly-Exploring Random Trees) and a reactive
system for collision avoidance called DSS (Dynamic Safety Search, [5]).

The path-planning system has to find a free path from a given start position
to a goal position. In every cycle the RRT algorithm builds a tree in the state



space beginning with a node at the start position. The tree is extended by adding
new nodes towards different target positions. Only with a small probability the
tree is extended directly towards the goal position. Mostly the target position
is a randomly chosen position on the field. Once a free path has been found the
nodes on this path are saved as waypoints (see Execution Extended RRT [4]).
These waypoints can be chosen in the next cycle as target positions. Because
of the short cycle time, most parts of a previously found path can be reused to
increase the replanning efficiency. This algorithm does not search for the optimal
solution. Due to the high dynamic environment its preferable to find some free
path in a short time, than searching a long time to find the best path.

The state space used for the RRT consists only of two dimensional field
positions. Robot dynamics like speed or acceleration constraints are disregarded.
This would lead to a much larger state space and the pathplanning would not
be fast enough. This means that its not always possible to follow a path given
by the RRT with maximum speed. Nevertheless the desired acceleration is set
to the maximum acceleration in the direction given by the path. After these
accelerations are calculated for all robots the second part of the path-planning
system is used to avoid collisions.

The desired accelerations are checked by the Dynamic Safety Search de-
scribed in [5]. For every robot a trajectory is calculated. In the first segment
of the trajectory the given acceleration is executed for one cycle, after this the
second segment executes the maximum deceleration to stop the robot. The DSS
checks these trajectories for collisions and changes unsafe accelerations. If no
safe acceleration can be found, it is at least possible to stop the robot without
collisions.

4.3 Positioning

Every robot chooses its positioning behavior depending on the assigned role.
Whereas striker and defender act similarly when in possession of the ball, they
have different tasks when they are not. The striker without ball has a prioritized
list of actions to choose from. If the ball is not already moving towards the
robot, it tries to get to a free point preferring a position that has a free line
between itself and the goal / the ball. To find the best position on the field, a
grid of positions (cf. Fig. 4) of which every single one is rated according to a set
of parameters is used. As it turned out to be very expensive to recalculate all
positions in every cycle, a two stage system was implemented: First, a wider grid
is calculated from which a well rated area of positions is taken, then the positions
in the chosen area are rated more precisely. If no position matching the criteria
can be found, the striker positions diagonally behind the robot possessing the
ball. This leads to a dramatically decreased number of turnovers in duels.

4.4 Coach

For every offensive standard situation, more than one tactical behavior is pre-
pared, which the robots are able to perform. The Coach is trying to get the best



Fig. 4. Visualization of the yellow team’s position rating grid, showing good positions
in red.

behavior suitable against the current opponent team. It rates the previously exe-
cuted behaviors and chooses the best rated. The results are improving, the more
situations the Coach evaluates.

4.5 Coordinator

To optimize the decisions made by XABSL, the Coordinator system can over-
write and/or redistribute the calculated output symbols, if it detects a possi-
ble improvement resulting from the advantage of knowing which decisions have
been made for every single robot. The Coordinator also replaces some parts of
the XABSL behavior for some situations that benefit from a centrally managed
control.

4.6 Communication

The system uses UDP multicast sockets for communication between wired sys-
tem components, e.g. the Vision and the Agent application. This allows to start
programs on different computers without changing parameters and to work in
small groups in the same physical net without influencing each other. The world
model and the robot commands which are communicated, can be captured and
analyzed.

Regarding the wireless communication between the Agent and the robots,
the connection quality of a particular medium depends on the conditions on the



venue, so our wireless communication is able to use more than one transport
medium.

A modular communication interface has been installed so different modules
can be added and used simultaneously. Currently we can use WLAN IEEE
802.11b, Amber Wireless (868 MHz radio) and DECT for communication with
the robots. The same packets are sent via every media and a sequence number
in the packet header ensures that old packets will be dropped. If one medium
fails, the robot will instantly use another medium.

Feedback containing information about battery charge and other status infor-
mation that may affect behavior and other components is sent from the robots.
This allows a dynamical adjustment of formation (e. g. a robot without working
kick should not be striker) during the game and can be used to calibrate PID
values.

B-Smart team members

Sebastian Fritsch, Sven Hinz, Kamil Huhn, Teodosiy Kirilov, Tim Laue, Eyvaz
Lyatif, Marc Michael, Markus Miezal, Markus Modzelewski, Alexander Martens,
Ulfert Nehmiz, Thomas Röfer, Malte Schwarting, Andreas Seekircher

References

1. Röfer, T., Laue, T., Thomas, D.: Particle-filter-based self-localization using land-
marks and directed lines. In: In RoboCup 2005: Robot Soccer World Cup IX,
Lecture Notes in Artificial Intelligence, Springer (2005)

2. Lötzsch, M., Risler, M., Jüngel, M.: XABSL - A Pragmatic Approach to Behavior
Engineering. In: Proceedings of IEEE/RSJ International Conference of Intelligent
Robots and Systems (IROS), Beijing, China (2006) 5124–5129

3. Röfer, T., Brunn, R., Czarnetzki, S., Dassler, M., Hebbel, M., Jüngel, M., Kerkhof,
T., Nistico, W., Oberlies, T., Rohde, C., Spranger, M., Zarges, C.: GermanTeam
2005. In: RoboCup 2005: Robot Soccer World Cup IX. Lecture Notes in Artificial
Intelligence (2005)

4. Bruce, J., Veloso, M.: Real-time randomized path planning for robot navigation.
In: Proceedings of IROS-2002, Computer Science Department (2002)

5. Bruce, J.: Real-Time Motion Planning and Safe Navigation in Dynamic Multi-Robot
Environments. PhD thesis, Carnegie Mellon University (2006)


