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Abstract. This paper presents a detailed description of Skuba, a Small-Size 
League RoboCup robot team in addition to the team description paper. The 
robot system is designed under the RoboCup 2010 rules in order to participate 
in the RoboCup competition in Singapore. The system consists of several 
components which are explained in each section. 

1   Introduction 

Skuba is a small-size league soccer robot team from Kasetsart University, which has 
entered the RoboCup competition since 2006. We got the championship last year 
from the RoboCup 2009 in Graz, Austria and another championship in December 
from RoboCup China Open 2009 in Dalian, China. 

The robot system consists of two main components: the robot hardware and the 
software. The software makes strategic decisions for the robot team by using 
information about the object positions from the vision system. The global vision 
system run by the shared vision software, SSL-Vision, uses two cameras mounted 
over field. The software executes plans by calculating the robot actions and then 
sends the commands to each robot. 

Our team has ten identical robots, six of them were built in 2008 and another four 
were built in 2009 with some minor changes in material and mechanical design. We 
are not planning to make any major changes to the design. The robot hardware is the 
same as used in last year. 

This year, the main focus of our development is the automatic calibration. Even 
though every robot is built by the same design and material, there are still some errors 
from the manufacturing and assembling process. Furthermore, some parameters can 
be changed according to the competition environments. These issues involve the need 
of calibration for the accuracy of the system. The kicker and the low level controller 
parameters used to be manually calibrated. These calibrations are time consuming and 
need manpower to do the experiments. The automatic calibration process simply uses 
the same procedure as the manual calibration does, but it’s done automatically by the 
software. 



1.1   Team Members 

Kanjanapan Sukvichai : Control Theory, Supervisor 
Piyamate Wasuntapichaikul : Electronics, Firmware, Team Leader 
Chanon Onman : AI Software 
Phumin Phuangjaisri : Electronics 
Chinatun Areeprasert : Mechanics 
Tanusak Kathongthung : Mechanics 
Nuttapol Runsewa : AI Software 
Khakhana Thimachai : AI Software 
Teeratath Ariyachartphadungkit : Apprentice 
Krit Chaiso : AI Software 

2   Robot Electronics 

This section describes the robot electronics system including the designs and 
components. Details about operations and algorithms are in the firmware section. 

The robot consists of two electronics boards: the main board and the kicker board. 
The main board handles all of the robot tasks except kicking. The kicker board 
controls the entire kicker system. 

2.1   Main Electronics Board 

The board consists of a Xilinx Spartan-3 XC3S400 FPGA, motor driver, user 
interface, some add-on modules and debugging port. The microprocessor core and 
interfacing logic for external peripherals are implemented using FPGA in order to 
handle the low-level control of the brushless motor such as velocity and position 
control.   The main electronics board receives commands from the main software on a 
computer. The board integrates the processing components together with the power 
components to keep the board compact and minimize wiring. With limited space, 
almost components are in small SMD packages. However, these components still 
large enough for hand soldering with conventional tools. Figure 1 show the main 
electronics board of the robot. 



 

Fig. 1. The main electronics board. 

2.2   Battery and Power Supply 

Each robot uses 4-cell lithium polymer battery with capacity around 1700-2200mAh 
as a power source. The robot can run for several hours with this battery pack. There 
are three main power lines in the robot: kicker board, motor driver and processing 
components. These lines are protected with different current rating fuses. The power 
supply current is monitored by the current sensors which are attached to each motor 
driver and kicker board to limit the current when short-circuit occurs. 

2.3   Motors 

There are two types of motor in the robot, the driving motor and the dribbling motor, 
both are brushless motor. Each driving motor is a 30 watts Maxon EC45 flat motor 
with a custom back-extended shaft for attaching encoder wheel. The motor itself can 
produce a feedback signal from hall sensors for measuring wheel velocity. However, 
this multi-pole motor sends only roughly 48 pulses per revolution; therefore, this 
motor is equipped with an US Digital E4P encoder which have higher resolution of 
1440 pulses per revolution. The dribbling motor is a high speed 15 watts Maxon 
EC16 motor. Despite a very low resolution of 6 pulses per revolution signal from hall 
sensors, the implementation of the PI controller is possible when running this motor at 
high speeds. The maximum speed of the dribbling bar is about 13000 rpm. 

The motor driver is a three phase inverter circuit using complementary N and P 
channel power MOSFET in each phase. This configuration doesn’t require bootstrap 
driver as in N-channel-only configuration. These MOSFETs are driven by MOSFET 
driver ICs to minimize switching loss. The motor commutation and PWM generation 
are described in the firmware section. Figure 2 shows the three-phase brushless motor 
driver circuit. 
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Fig. 2. The three phase inverter in complementary configuration. 

2.4   Kicker 

Both kicker and chip kicker in the robot are energized by solenoids. These solenoids 
are fed with a high current impulse to produce intense magnetic field in a short period 
of time. The impulse current is created from discharging the high voltage capacitor 
into solenoid wire. Charging and discharging the capacitor are controlled by the 
kicker board. This board consists of power switching devices: MOSFET and IGBT 
which are controlled from the main board. 

The charger is a switching DC boost converter circuit. The RC snubber is added 
into the switching node in order to reduce ringing and EMI which are created by the 
parasitic inductances and capacitances [1]. With current design, the kicker board can 
charge two 2700 µF capacitors from 0V to 250V in about 5 seconds with 2A average 
current. 

The kicker is a cylindrical shaped solenoid attached to a curved kicking plate and 
the chip-kicker is a flat shaped solenoid attached with a 45 degree hinged wedge. 
These solenoids are driven by IGBTs and the kicking force is controlled using PWM 
signal. The kicker board is depicted in Figure 3. 



 

Fig. 3. The kicker board. 

2.5   Ball Sensor 

The infrared break beam in front of the kicker is used to detect the presence of the 
ball. This sensor is useful in the passing and one-touch shooting. These robot skills 
use this sensor as a trigger for the kicker, since the vision cannot detect the ball 
location accurately.  

2.6   Communication 

The communication between robots and the computer can be made by using a radio 
device. A bi-directional wireless module is operating at 2.4GHz frequency in ISM 
band which offers channel switching around 2.4GHz to 2.5GHz for the 
communication. This wireless module consists of a wireless transceiver IC from 
Nordic Semiconductor: nRF24L01+. 

Each robot communicates with an external wireless board which is linked to the 
computer via a USB port. This board consists of two independent wireless modules 
which can provide a full-duplex communication. 

2.7   Debugging 

The main board has switches, LEDs and buzzer to provide debugging capabilities. 
These components are connected to the FPGA using shift registers to minimize FPGA 
input/output pin, only four signal lines are used. The robot can be manually controlled 
to do some tests for calibrating and setting parameters such as the kicker force and 
sensor compensation. These parameters are also saved inside an onboard non-volatile 
memory. This memory also used as a storage for capturing encoder, current or other 
information which can be downloaded via a serial port. This information is very 
useful for PI controller tuning and sensor calibration. 



3   Robot Firmware 

The main electronics board consists of a FPGA as a single chip central controller. The 
FPGA is embedded with a 32-bit processor, brushless motor controller, PWM 
generator, quadrature decoder, kicker board controller and onboard peripheral 
interfacing cores: SPI and UART. The processor runs at 30MIPS as same as oscillator 
clock speed. We use Altium Designer and Xilinx ISE software to generate, configure 
and debug these cores.  

3.1   Brushless Motor Driver 

The three phase inverter bridge is fed with signals from FPGA to provide 
commutation for each motor. These signals are ANDed with the PWM signal to vary 
the average voltage applied to the motor winding. The six steps commutation 
sequence is detected by three hall sensors in the motor. Both high and low side drivers 
are driven by PWM signals to control the torque applied to the motor. 

3.2   Motion Control 

The robot employs a PI controller as a motion controller, one controller for each 
motor. The control loop executes 600 times per second using velocity feedback from 
the encoder in driving motor and hall sensors in dribbling motor. The proportional 
and integral gains are manually hand-tuned. The computer sends a velocity for each 
DOF: x-y axis and rotation axis. Then, converted to each wheel velocity and sent to 
the PI controller. The output from the controller is sent directly to the PWM 
controller. 

3.3   Over-current Protection 

General problem when driving the inverter bridge is the shoot-through current. This 
current is caused by turning on one side of the driver immediately after the other side 
of the driver has been turned off, because the MOSFET turn-off time is usually higher 
than the turn-on time. This situation occurs when the motor is reversing direction, 
which can be prevented by adding a small delay time between each high and low side 
driver signal. 

Many of robot skills use the dribbler. Some ball stealing skills can cause dribbling 
motor to stall when the dribbling bar is contacted with the opponent robot. The stalled 
motor consumes very high current and often burn the fuse out. This over-current 
situation can be detected by a current sensor and can be prevented by limiting a PWM 
duty cycle until the current drop below the safe motor operating current. Figure 4, 
depicts the motor stalling situation. When the motor stalled, the motor current 
increased and dropped in a short time due to limited duty cycle. The motor current is 
controlled around the threshold while the motor is stalling. 
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Fig. 4. PWM duty cycle, velocity and current. The motor is run from stop. 
Then, a very large load applied to the motor in between 0.5 sec to 1.5 sec.  

Current value is in ampere, duty cycle and velocity are normalized. 

3.4   Kicker 

Kicker board consists of power electronic components which are controlled directly 
from the FPGA in the main board. The board requires PWM signal for switching 
circuit and another PWM signal to impulse the kicker with the desired kicking force. 
The switching DC converter uses a soft-start method to reduce inrush current when 
the capacitor is empty. This method is done by starting with the low duty cycle and 
ramping up over the time until it reaches the limit. The ramping starts again when the 
kicker is activated. Details about operation and implementation of a similar circuit are 
in [2]. 

3.5   Communication 

The robot commands are sent to each robot for each frame of software execution. 
Then, each robot sends back the status after received its commands immediately. The 
commands are in small packet containing velocities, dribbler and kicker command 
with some headers for testing and calibrating purpose. The robot status contains 
battery level and sensors information. 



4   Robot Mechanics 

This section describes the mechanical system of the robot which consists of the 
driving system, ball control system and kicking system.  

The robot has a diameter of 176 mm and a height of 147mm.The dribbler covers up 
to 20% of the ball diameter. The 3D CAD model of the robot and the real robot are 
shown in Figure 5 and 6 respectively. 

  

    Fig. 5. 3D CAD model of the robot. Fig. 6. Real robot. 

4.1   Wheels 

The robot has four omni-directional wheels. Each wheel has a diameter of 50.8 mm. 
The wheel cover is made from aluminum and its base part is made from 
polycarbonate, the light weight material. There are fifteen small rollers per wheel. 
Double seal o-ring is used for each roller in order to get more friction. This wheel 
provides enough friction to drive the robot with 3.5 m/s2 of acceleration and 5 m/s of 
velocity. The robot wheel is shown in Figure 7 (CAD model) and 8 (real wheel). 
 



  

Fig. 7. 3D CAD model of the omni-directional wheel. 

 

Fig. 8. The omni-directional wheel. 

4.2   Driving System 

The robot uses brushless motor, 30 watts Maxon EC45 flat, in the driving system. The 
driving system uses gear ratio of 3.6:1 (72:20). This gear ratio can provide the 
satisfying acceleration and velocity with the specified wheel diameter. The 5 mm-
thick bottom plate connects all of the robot parts together. The robot’s partly 
assembled chassis is shown in Figure 9. 



 

Fig. 9. The robot’s chassis with four brushless driving motors. 

4.3   Ball Control System 

4.3.1   Suspension System 

The entire dribbler assembly is hinged with the chassis plate which is attached with a 
sponge damper. We use adjustable screw as the stopper, allowing the suspension to 
swing about 6.5 degree. This suspension system makes the robot able to receive the 
fast moving ball in passing skill. Both outer sides of the suspension arms are equipped 
with the covers to protect the infrared sensors from damaging. Figure 10 and 11 
shows the suspension system of the robot. 

 

Fig. 10. The suspension with a sponge damper. 



 

Fig. 11. The dribbler assembly. 

4.3.2   Dribbling System 

Suspension and dribbling system are both necessary for controlling the ball. The 15 
watts Maxon EC16 is used as a dribbling motor. The 5.4:1 planetary gearhead is 
attached to this motor. The dribbling bar can spin at the maximum speed of 13000 
rpm. The dribbling bar is made from aluminum rod with a diameter of 10 mm as 
shown in Figure 11. The dribbling bar is covered with a silicone tube which has a 
good property to spin the ball firmly. 

4.4   Kicking System 

4.4.1   Kicker 

The kicker is energized by solenoid system. It is the cylindrical solenoid wound with 
seven layers of 23AWG enameled wire. The kicking plunger rod is separated into two 
parts. The first part is magnet part which is made from steel and the second is made 
from material with no magnetic property, aluminum. Both rods have the diameter of 
11 mm. These rods are joined together and attached with the curved aluminum 
kicking plate. This plate has a contacting radius of 300 mm which results in more 
accurate shooting when the ball is not in the center of the kicker. The kicking system 
makes the robot able to kick the ball at maximum speed of 12-14 m/s. 



4.4.2   Chip Kicker 

The chip kicker uses the flat solenoid which is made from glass reinforced epoxy 
wound with five layers of 24AWG enameled wire. This solenoid is placed in the front 
part of the bottom plate. The flat plunger is steel with the thickness of 3.75 mm. 

The chip-kicker is a hinged wedge which swings around the pivots. Pin is used as a 
pivot rather than the bearings because it has more endurance. The swinging degree is 
also limited by the other pins. The chip-kicker is made from 7075 aluminum alloy, 
which has more strength than the standard aluminum. It has a 45 degree slope at the 
front as the contact point. This chip kicker has an ability to chip the at a maximum 
distance of 7.5 m. 

5   Software Architecture 

The overall software architecture is illustrated in Figure 12. The software consists of 
several modules organized as a multilayer architecture. This software has been being 
continuously developed since RoboCup 2006 based on the strategy structure of 
Cornell Big Red 2002’s software.  

 

Fig. 12. The software architecture. 



5.1  SSL-Vision 

The use of shared vision system named SSL-Vision is required by the competition 
rule. This new vision software can be integrated into the system by simply replacing 
our Vision Server software. With some code changes in the vision protocol, the 
existing software works with the shared vision system successfully. The SSL-Vision 
also provides geometric parameters which are very useful for the chip-kicker 
calibration. 

5.2   VisionServer 

The integration of all cameras’ information is done on the VisionServer process. The 
information from two cameras which comes from overlapped regions is integrated. 
Each detected object is tagged with the confident value based on confident rules. 
When the information from two cameras are inconsistent, for example, when there are 
more than one of the same type of object from different camera, the server decides on 
the higher confident value. Finally, the vision server sends the consistent information 
of the whole situation to the BehaviorClient. 

5.3   BehaviorClient 

The BehaviorClient has three main modules. At the First VisionModule receives 
vision information from VisionServer or SimulatorServer and predicts that 
information to account for latency. Then StrategyModule gets predicted vision 
information from the VisionModule and chooses destinations for all 5 robots. Finally 
ControlModule retrieves predicted vision from VisionModule and destinations from 
StrategyModule and makes robots go to those destinations.  

5.3.1   VisionModule 

This module was liable for taking the vision data, extracting velocity information 
from it, and predicting the location of the robots and the ball in the future frame.  

Our total system latency, measuring from the period between command velocity 
and raw velocity, is approximately 133 ms (8 frames). When our robot move at the 
fastest speed, that is up to about 3.5 m/s, the distance between real robot position and 
the robot position from vision data will grow up about 47 cm. In order to correct this 
error we have to estimate the positions and orientations of the robots. The estimation 
architecture is shown in Figure 13. 



 

Fig. 13. The architecture of the estimator. 

For the opponents and the ball, filtering and estimation were performed using 
Kalman filters. For teammate robots, the commanded robot velocities were used to 
gain more accurate estimation of their position.  

5.3.2   StrategyModule 

We have a hierarchical model in our StrategyModule design. The module is rebuilt 
from scratch by using strategy structure based on Cornell Big Red 2002.  

The StrategyModule consists of multiple Plays. Whenever a Play is executed it 
calls the Roles for all Positions present. Then Roles run Skills for the related robots. 
All the plays are stored in the PlayBook in an array, while all the skills are stored in 
each SkillSet array. 

The StrategyModule architecture is depicted in Figure 14. There are five layers, 
described in detail below. 



 

Fig. 14. The architecture of StrategyModule. 

Play represents a particular global state of the AI and the general goal the positions 
are attempting to achieve at any given time. Examples are “OffensePlay”, 
“DefensePlay”, “FreekickUsPlay”. During any play, roles for positions that are 
present are executed. There are unique roles for each position for each play and plays 
do not call skill directly. The system will transition from one play to another when 
necessary by PlayTransition, but while in a particular state a particular play is being 
executed every frame. 

After receiving data from referee box signal, Manager will select the group of play 
that suitable for that moment such as “GrazManager” or “SuzhouManager”. Each 
Play in Manager is configured by system parameter. 

Skill is a basic action of robot, such as “ShootingSkill” or “GetBallSkill”. Each 
robot has a set of skills stored in a SkillSet object. Each skill is different and performs 
a different function. Skills allow state to be kept because skills are objects with 
private data, not just functions as used in the past. In addition, skills provide various 
methods for initialization, running, loading and reloading parameters, and much more. 

Role is a combo set of skills that call by each position, such as “ForwordRole” or 
“GoalieRole”. By the way, both plays and positions can call skill directly but it will 
complicate if they have many states. Roles are object that inherit from skill, so they 
have same properties with skill. 



There exist four robot positions on the field Blocker, Defender, Aggressor, and 
Creator. The fifth robot position is called SpecialOp that can take on one of three 
dutys: SpecialOpDefender, SpecialOpAggressor, or SpecialOpCreator. 

The Blocker remains in the defense zone the majority of the time, only venturing 
slightly outside of it at times. The Blocker is the only position that will try to grab the 
ball when inside of the goalie box. 

The Defender is a dedicated position to the defense. The defender always remains 
on our side of the field, almost entirely in the defense zone, and works with or 
supplements the actions of the blocker, stopping shots or closing holes whenever 
possible.  

The Aggressor is the most active player on the field. See a robot who has the ball, 
he's undoubtedly the aggressor. See a robot go up to an opponent who has the ball, 
either to screen him from our goal or strip the ball away, that is the aggressor. 

The Creator is our dedicated robot to creating opportunities. The creator spends the 
majority of his time far upfield, either in the kill zone, offensive zone, and sometimes 
as low but never lowers than the death zone.  

The SpecialOpDefender acts as an auxiliary defender. When available, the 
SpecialOpDefender may screen auxiliary opponents who are coming down the field 
from getting near the ball. He may also help block passes or shots on goal. Usually he 
roams slightly in front of the Defender, or on the opposite side of the field, allowing 
him to move upfield and become a SpecialOpAggressor or SpecialOpCreator when 
the play changes. 

The SpecialOpAggressor assists the aggressor. This means running screens to help 
the aggressor dribble up the field, setting up picks for quicker jukes by the aggressor, 
and also getting open for quick passes upfield when the aggressor gets bogged down. 

The SpecialOpCreator helps the creator create opportunities by screening or 
various other blocking techniques. He also gets open for a pass under such scenarios. 

5.3.3   ControlModule 

ControlModule receives predicted vision from VisionModule and destinations from 
StrategyModule and makes robots go to those destinations. So, the essential 
component of ControlModule is a path planning algorithm. 

Since the World RoboCup 2008 at Suzhou, we have made use of the “Real-Time 
Randomized Path Planning for Robot Navigation” [3] for default path planning 
algorithm. The path planning developed representation on Rapidly-Exploring Random 
Trees (RRTs) as shown in Figure 15. 

 



 

Fig. 15. The robot path generated from RRT path planner. 
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Fig. 16. Wheel configuration of the robot. 

5.3.4   Modified Robot Kinematics 

Normally, when the software sends the velocity command to the robot, it doesn’t 
perform any velocity feedback control and it assumes that the robot’s motion 
controller has already taken care of this. But due to the loss from friction, wheel 
slippage and other real world problems, the robot cannot move as fast as commanded. 
The regular robot kinematics describes an ideal situation where there’s no system 
disturbance. In order to control the robot more accurately, the robot kinematics is 
modified with the some disturbance parameters. The friction force and traction torque 
vector are defined. 



The normal kinematics can be written as: 
†( )earth command                                                 (1) 

where, 
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†   is the pseudo inverse of the kinematic equation 

 
Equation (1) is lack of information about surface frictions. Therefore, if robot 

trajectories are generated from equation (1), those trajectories cannot guarantee the 
real robot velocity and position. The modified kinematic model is introduced in order 
to modify the robot kinematic with friction parameters.   Let the modified kinematics 
of the mobile robot be described by 

†( )earth command                                               (2) 

where, 
   is the Viscous friction matrix (velocity friction) 

   is the Coulomb friction vector (surface friction) 
 

From the experiment, friction can be separated into two friction, coulomb friction 
and viscous friction. Coulomb friction vector ( ) is a constant vector according to 
time while viscous friction matrix ( ) is a function of the specific angular velocity of 

the robot (independent of time). The coulomb friction vector is easily found by 
experiment since this friction is constant for specific surface but the viscous friction 
cannot be found by simple experiment. Although the viscous friction is linearly 
dependent on an angular velocity of the robot chassis but this friction is a non-linear 
function when it’s transformed to time domain. The viscous friction can be 
approximated to the linear third-order polynomial. In order to find the viscous friction 
matrix, the captured robot velocity in the earth frame is used. Let consider 

 

captured earth  
                                             

   (3) 

 where,  

captured  is a captured robot velocity by bird eye view camera 
   is a measurement noise 

 
And  

 
†

_earth ideal command  
                                              

 (3) 



where, 
_earth ideal  is a ideal velocity of a robot when robot motors are motorized at 

command speed command  
 
Define the error function at particular time, by this definition  is constant for the 

specific angular velocity at a time. 
 _captured earth ideae                                                 (4) 

 
Evaluated equation (4) as following: 
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Idea is find the   matrix by using Least Square Error (LSE) approximation. But if 

we develop equation (5) as a normal procedure, the inverse of term 
( )T

command command  is not exist because det( )T
command command  is always zero. In order 

to solve this problem, the Kronecker product is used. The Kronecker product is a 
operator transform a regular matrix multiply to a block matrix as: 

 

[ ]ijA B block a B                                                (6) 

 

If  A  is m n and B  is s t , then A B is an ms nt matrix. Kronecker 
production is used to rearrange an order of command  , and then the LSE is possible. 

After apply the index modification, the final form of the transformation can be 
defined as: 
 
Let m lA R  and l mX R   then 

( )TmAX B I X a b    


                                      (7) 

 where, 

 ,a b


are the vector version of the matrix ,A B  respectively  

 
Equation (5) can be rearranged by Kronecker Product as the following process: 
 

1. Let ( ) , ,commandy e x A         

then ( ) commande y Ax          

2. Solve  ( )Tmxn nx mx m mnxA x y I x A y   1 1 1


 



3. Viscous friction matrix (now in vector form)  = 

(( ) ( )) ( )T T T T T
mnx m m mA I x I x I x y      1

1


 

 
After viscous friction matrix is found, the experiment can be retest again in order to 
lower the measurement error. 
 

Figure 17 and 18 show the captured data from vision system and the result after the 
viscous friction of the matrix is approximated respectively. Since there are 
measurement noises therefore these viscous matrix parameters are needed to average 
and their means are the representatives of their group. We use this average viscous 
friction matrix as our viscous matrix at particular time. 

Although, the viscous friction matrix is found but it represents only at specific 
angular velocity of the robot at a particular time therefore the parameters of the matrix 
in other angular velocity are needed to be found by repeating the experiment, and then 
fitted into polynomial curve as mentioned before. 

 
Fig. 17. Linear velocity of the robot in Earth frame [ ]Tx y    

 



 
Fig. 18. Approximated viscous friction matrix parameters. 

 

Fig. 19. Useable region of the velocity data. 



By using modified kinematics to generate the control command, the robot can 
move more accurately. The comparison of the experimental result is shown in Figure 
20. 

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

R
ob

ot
 V

el
oc

it
y 

(m
/s

)

Command

Observed

 

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

R
ob

ot
 V

el
oc

it
y 

(m
/s

)

Command

Observed

 
Fig. 20. The robot observed velocity profile using normal kinematics (top)  

and modified kinematics (bottom). 

5.4   RadioServer 

Commands which are generated from two individual StrategyModules are 
encapsulated into a single packet in the RadioServerModules. After commands are 
packed, the module will send this packet to the wireless board via a USB port. We use 
full duplex communication for our system in order to get some information form 
robots in real-time. Therefore, this RadioServerModule is also used to receive the 
send-back data and return it to each StrategyModule.  



5.5   SimulatorServer 

Our SimulatorServer is developed in order to simulate robot hardware behavior. The 
SimulatorServer receives a sequence of packets which is identical to packets that are 
sent to real robots then calculates some simple physics and returns the coordinate of 
objects in the field to the software as same as the VisionServer does. Our 
SimulatorServer is entirely independent from AI System which is capable of 
simulating all the field objects and latency of the system.  

The field objects are simulated by physics engine library called Open Dynamics 
Engine (ODE) [12]. The SimulatorServer provides connection socket for some two AI 
systems which means that the simulator is capable to simulate a real competition 
situation. 
 

5.6   Kicker Automatic Calibration 

The automatic calibration system is added to the software in order to reduce 
manpower and time during the team setup process. The calibration software performs 
sets of experiment in order to obtain the relationship between input and output 
parameters. Similarly to the motion controller calibration method described in section 
2.1, the kicker calibration software is used to estimate the relationship between both 
the chip-kicking distance or ball speed and the magnitude of the kick command sent 
to the robot. In the calibration procedure, the speed of the ball is easily obtained from 
the vision module while the chip-kicking distance requires trajectory estimation 
method based on the model given in [4]. This method uses the camera parameters 
from the SSL-Vision and several ball positions in consecutive frames to approximate 
the actual trajectory of the ball in the air. Given the parabolic trajectory of the ball, the 
falling point is calculated and the chip-kicking distance is obtained. The snapshots of 
the calibration process of the chip-kicker are shown in Figure 21 and 22. The 
relationship is then modeled using second order polynomial and can be estimated 
from the experimental results using least squares polynomial fitting. The example of 
the kicker calibration result is shown in Figure 23. 



 

Fig. 21. Snapshots of the chip-kicker calibration process. 

 

Fig. 22. Parabolic trajectory of the chip-kicked ball. 
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Fig. 23. Relationship between the ball speed and the magnitude of the kick command obtained 

using second order polynomial least squares fitting. 

 

6   Conclusion 

Table 1. Competition results for Skuba SSL RoboCup team. 

Competition Result 
RoboCup Thailand Championship 2005 
RoboCup Thailand Championship 2006 

RoboCup 2006 
RoboCup Thailand Championship 2007 
RoboCup Thailand Championship 2008 

RoboCup 2008 
RoboCup 2009 

RoboCup China Open 2009 

3rd Place 
Quarter Final 
Round Robin 

3rd Place 
2nd Place 
3rd Place 
1st Place 
1st Place 

Our system has been continuously improving since the beginning. Last year, we 
introduced some improvements about the low level motion controller and the robot 
hardware. The new calibration software for this year was proven to be very useful. In 
RoboCup China Open 2009, the automatic calibration software greatly reduced the 
amount of team setup time which allowed us to focus more on the strategic planning. 
The software which runs the robot team was built in 2006 and improved each year. It 
has given us very successful competition results for the last several years, the results 
are summarized in table 1. We hope that our robot team will perform better in this 
year and we are looking forward to sharing experiences with other great teams around 
the world. 
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