
Skuba 2010 Extended Team Description

Piyamate Wasuntapichaikul1, Jirat Srisabye1, Chanon Onman1,
Supparat Damyot2, Chinatun Areeprasert2 and Kanjanapan Sukvichai3

1 Department of Computer Engineering

2 Department of Mechanical Engineering
3 Department of Electrical Engineering

Faculty of Engineering, Kasetsart University
50 Phaholyothin Rd., Ladyao, Jatujak, Bangkok, 10900, Thailand
baugp@hotmail.com, jiratto@gmail.com, nobitaa@hotmail.com,

leksupp@hotmail.com, apeeranut@hotmail.com, fengkpsc@ku.ac.th

Abstract. This paper presents a detailed description of Skuba, a Small-Size
League RoboCup robot team in addition to the team description paper. The
robot system is designed under the RoboCup 2010 rules in order to participate
in the RoboCup competition in Singapore. The system consists of several
components which are explained in each section.

1 Introduction

Skuba is a small-size league soccer robot team from Kasetsart University, which has
entered the RoboCup competition since 2006. We got the championship last year
from the RoboCup 2009 in Graz, Austria and another championship in December
from RoboCup China Open 2009 in Dalian, China.

The robot system consists of two main components: the robot hardware and the
software. The software makes strategic decisions for the robot team by using
information about the object positions from the vision system. The global vision
system run by the shared vision software, SSL-Vision, uses two cameras mounted
over field. The software executes plans by calculating the robot actions and then
sends the commands to each robot.

Our team has ten identical robots, six of them were built in 2008 and another four
were built in 2009 with some minor changes in material and mechanical design. We
are not planning to make any major changes to the design. The robot hardware is the
same as used in last year.

This year, the main focus of our development is the automatic calibration. Even
though every robot is built by the same design and material, there are still some errors
from the manufacturing and assembling process. Furthermore, some parameters can
be changed according to the competition environments. These issues involve the need
of calibration for the accuracy of the system. The kicker and the low level controller
parameters used to be manually calibrated. These calibrations are time consuming and
need manpower to do the experiments. The automatic calibration process simply uses
the same procedure as the manual calibration does, but it’s done automatically by the
software.

1.1 Team Members

Kanjanapan Sukvichai : Control Theory, Supervisor
Piyamate Wasuntapichaikul : Electronics, Firmware, Team Leader
Chanon Onman : AI Software
Phumin Phuangjaisri : Electronics
Chinatun Areeprasert : Mechanics
Tanusak Kathongthung : Mechanics
Nuttapol Runsewa : AI Software
Khakhana Thimachai : AI Software
Teeratath Ariyachartphadungkit : Apprentice
Krit Chaiso : AI Software

2 Robot Electronics

This section describes the robot electronics system including the designs and
components. Details about operations and algorithms are in the firmware section.

The robot consists of two electronics boards: the main board and the kicker board.
The main board handles all of the robot tasks except kicking. The kicker board
controls the entire kicker system.

2.1 Main Electronics Board

The board consists of a Xilinx Spartan-3 XC3S400 FPGA, motor driver, user
interface, some add-on modules and debugging port. The microprocessor core and
interfacing logic for external peripherals are implemented using FPGA in order to
handle the low-level control of the brushless motor such as velocity and position
control. The main electronics board receives commands from the main software on a
computer. The board integrates the processing components together with the power
components to keep the board compact and minimize wiring. With limited space,
almost components are in small SMD packages. However, these components still
large enough for hand soldering with conventional tools. Figure 1 show the main
electronics board of the robot.

Fig. 1. The main electronics board.

2.2 Battery and Power Supply

Each robot uses 4-cell lithium polymer battery with capacity around 1700-2200mAh
as a power source. The robot can run for several hours with this battery pack. There
are three main power lines in the robot: kicker board, motor driver and processing
components. These lines are protected with different current rating fuses. The power
supply current is monitored by the current sensors which are attached to each motor
driver and kicker board to limit the current when short-circuit occurs.

2.3 Motors

There are two types of motor in the robot, the driving motor and the dribbling motor,
both are brushless motor. Each driving motor is a 30 watts Maxon EC45 flat motor
with a custom back-extended shaft for attaching encoder wheel. The motor itself can
produce a feedback signal from hall sensors for measuring wheel velocity. However,
this multi-pole motor sends only roughly 48 pulses per revolution; therefore, this
motor is equipped with an US Digital E4P encoder which have higher resolution of
1440 pulses per revolution. The dribbling motor is a high speed 15 watts Maxon
EC16 motor. Despite a very low resolution of 6 pulses per revolution signal from hall
sensors, the implementation of the PI controller is possible when running this motor at
high speeds. The maximum speed of the dribbling bar is about 13000 rpm.

The motor driver is a three phase inverter circuit using complementary N and P
channel power MOSFET in each phase. This configuration doesn’t require bootstrap
driver as in N-channel-only configuration. These MOSFETs are driven by MOSFET
driver ICs to minimize switching loss. The motor commutation and PWM generation
are described in the firmware section. Figure 2 shows the three-phase brushless motor
driver circuit.

5,
 6

, 7
, 8

1,
 2

, 3
5,

 6
, 7

, 8
1,

 2
, 3

5,
 6

, 7
, 8

1,
 2

, 3
5,

 6
, 7

, 8
1,

 2
, 3

5,
 6

, 7
, 8

1,
 2

, 3
5,

 6
, 7

, 8
1,

 2
, 3

VCC

MOTOR

Fig. 2. The three phase inverter in complementary configuration.

2.4 Kicker

Both kicker and chip kicker in the robot are energized by solenoids. These solenoids
are fed with a high current impulse to produce intense magnetic field in a short period
of time. The impulse current is created from discharging the high voltage capacitor
into solenoid wire. Charging and discharging the capacitor are controlled by the
kicker board. This board consists of power switching devices: MOSFET and IGBT
which are controlled from the main board.

The charger is a switching DC boost converter circuit. The RC snubber is added
into the switching node in order to reduce ringing and EMI which are created by the
parasitic inductances and capacitances [1]. With current design, the kicker board can
charge two 2700 µF capacitors from 0V to 250V in about 5 seconds with 2A average
current.

The kicker is a cylindrical shaped solenoid attached to a curved kicking plate and
the chip-kicker is a flat shaped solenoid attached with a 45 degree hinged wedge.
These solenoids are driven by IGBTs and the kicking force is controlled using PWM
signal. The kicker board is depicted in Figure 3.

Fig. 3. The kicker board.

2.5 Ball Sensor

The infrared break beam in front of the kicker is used to detect the presence of the
ball. This sensor is useful in the passing and one-touch shooting. These robot skills
use this sensor as a trigger for the kicker, since the vision cannot detect the ball
location accurately.

2.6 Communication

The communication between robots and the computer can be made by using a radio
device. A bi-directional wireless module is operating at 2.4GHz frequency in ISM
band which offers channel switching around 2.4GHz to 2.5GHz for the
communication. This wireless module consists of a wireless transceiver IC from
Nordic Semiconductor: nRF24L01+.

Each robot communicates with an external wireless board which is linked to the
computer via a USB port. This board consists of two independent wireless modules
which can provide a full-duplex communication.

2.7 Debugging

The main board has switches, LEDs and buzzer to provide debugging capabilities.
These components are connected to the FPGA using shift registers to minimize FPGA
input/output pin, only four signal lines are used. The robot can be manually controlled
to do some tests for calibrating and setting parameters such as the kicker force and
sensor compensation. These parameters are also saved inside an onboard non-volatile
memory. This memory also used as a storage for capturing encoder, current or other
information which can be downloaded via a serial port. This information is very
useful for PI controller tuning and sensor calibration.

3 Robot Firmware

The main electronics board consists of a FPGA as a single chip central controller. The
FPGA is embedded with a 32-bit processor, brushless motor controller, PWM
generator, quadrature decoder, kicker board controller and onboard peripheral
interfacing cores: SPI and UART. The processor runs at 30MIPS as same as oscillator
clock speed. We use Altium Designer and Xilinx ISE software to generate, configure
and debug these cores.

3.1 Brushless Motor Driver

The three phase inverter bridge is fed with signals from FPGA to provide
commutation for each motor. These signals are ANDed with the PWM signal to vary
the average voltage applied to the motor winding. The six steps commutation
sequence is detected by three hall sensors in the motor. Both high and low side drivers
are driven by PWM signals to control the torque applied to the motor.

3.2 Motion Control

The robot employs a PI controller as a motion controller, one controller for each
motor. The control loop executes 600 times per second using velocity feedback from
the encoder in driving motor and hall sensors in dribbling motor. The proportional
and integral gains are manually hand-tuned. The computer sends a velocity for each
DOF: x-y axis and rotation axis. Then, converted to each wheel velocity and sent to
the PI controller. The output from the controller is sent directly to the PWM
controller.

3.3 Over-current Protection

General problem when driving the inverter bridge is the shoot-through current. This
current is caused by turning on one side of the driver immediately after the other side
of the driver has been turned off, because the MOSFET turn-off time is usually higher
than the turn-on time. This situation occurs when the motor is reversing direction,
which can be prevented by adding a small delay time between each high and low side
driver signal.

Many of robot skills use the dribbler. Some ball stealing skills can cause dribbling
motor to stall when the dribbling bar is contacted with the opponent robot. The stalled
motor consumes very high current and often burn the fuse out. This over-current
situation can be detected by a current sensor and can be prevented by limiting a PWM
duty cycle until the current drop below the safe motor operating current. Figure 4,
depicts the motor stalling situation. When the motor stalled, the motor current
increased and dropped in a short time due to limited duty cycle. The motor current is
controlled around the threshold while the motor is stalling.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.00 0.50 1.00 1.50 2.00 2.50

time (s)

duty

velocity

current

Fig. 4. PWM duty cycle, velocity and current. The motor is run from stop.
Then, a very large load applied to the motor in between 0.5 sec to 1.5 sec.

Current value is in ampere, duty cycle and velocity are normalized.

3.4 Kicker

Kicker board consists of power electronic components which are controlled directly
from the FPGA in the main board. The board requires PWM signal for switching
circuit and another PWM signal to impulse the kicker with the desired kicking force.
The switching DC converter uses a soft-start method to reduce inrush current when
the capacitor is empty. This method is done by starting with the low duty cycle and
ramping up over the time until it reaches the limit. The ramping starts again when the
kicker is activated. Details about operation and implementation of a similar circuit are
in [2].

3.5 Communication

The robot commands are sent to each robot for each frame of software execution.
Then, each robot sends back the status after received its commands immediately. The
commands are in small packet containing velocities, dribbler and kicker command
with some headers for testing and calibrating purpose. The robot status contains
battery level and sensors information.

4 Robot Mechanics

This section describes the mechanical system of the robot which consists of the
driving system, ball control system and kicking system.

The robot has a diameter of 176 mm and a height of 147mm.The dribbler covers up
to 20% of the ball diameter. The 3D CAD model of the robot and the real robot are
shown in Figure 5 and 6 respectively.

 Fig. 5. 3D CAD model of the robot. Fig. 6. Real robot.

4.1 Wheels

The robot has four omni-directional wheels. Each wheel has a diameter of 50.8 mm.
The wheel cover is made from aluminum and its base part is made from
polycarbonate, the light weight material. There are fifteen small rollers per wheel.
Double seal o-ring is used for each roller in order to get more friction. This wheel
provides enough friction to drive the robot with 3.5 m/s2 of acceleration and 5 m/s of
velocity. The robot wheel is shown in Figure 7 (CAD model) and 8 (real wheel).

Fig. 7. 3D CAD model of the omni-directional wheel.

Fig. 8. The omni-directional wheel.

4.2 Driving System

The robot uses brushless motor, 30 watts Maxon EC45 flat, in the driving system. The
driving system uses gear ratio of 3.6:1 (72:20). This gear ratio can provide the
satisfying acceleration and velocity with the specified wheel diameter. The 5 mm-
thick bottom plate connects all of the robot parts together. The robot’s partly
assembled chassis is shown in Figure 9.

Fig. 9. The robot’s chassis with four brushless driving motors.

4.3 Ball Control System

4.3.1 Suspension System

The entire dribbler assembly is hinged with the chassis plate which is attached with a
sponge damper. We use adjustable screw as the stopper, allowing the suspension to
swing about 6.5 degree. This suspension system makes the robot able to receive the
fast moving ball in passing skill. Both outer sides of the suspension arms are equipped
with the covers to protect the infrared sensors from damaging. Figure 10 and 11
shows the suspension system of the robot.

Fig. 10. The suspension with a sponge damper.

Fig. 11. The dribbler assembly.

4.3.2 Dribbling System

Suspension and dribbling system are both necessary for controlling the ball. The 15
watts Maxon EC16 is used as a dribbling motor. The 5.4:1 planetary gearhead is
attached to this motor. The dribbling bar can spin at the maximum speed of 13000
rpm. The dribbling bar is made from aluminum rod with a diameter of 10 mm as
shown in Figure 11. The dribbling bar is covered with a silicone tube which has a
good property to spin the ball firmly.

4.4 Kicking System

4.4.1 Kicker

The kicker is energized by solenoid system. It is the cylindrical solenoid wound with
seven layers of 23AWG enameled wire. The kicking plunger rod is separated into two
parts. The first part is magnet part which is made from steel and the second is made
from material with no magnetic property, aluminum. Both rods have the diameter of
11 mm. These rods are joined together and attached with the curved aluminum
kicking plate. This plate has a contacting radius of 300 mm which results in more
accurate shooting when the ball is not in the center of the kicker. The kicking system
makes the robot able to kick the ball at maximum speed of 12-14 m/s.

4.4.2 Chip Kicker

The chip kicker uses the flat solenoid which is made from glass reinforced epoxy
wound with five layers of 24AWG enameled wire. This solenoid is placed in the front
part of the bottom plate. The flat plunger is steel with the thickness of 3.75 mm.

The chip-kicker is a hinged wedge which swings around the pivots. Pin is used as a
pivot rather than the bearings because it has more endurance. The swinging degree is
also limited by the other pins. The chip-kicker is made from 7075 aluminum alloy,
which has more strength than the standard aluminum. It has a 45 degree slope at the
front as the contact point. This chip kicker has an ability to chip the at a maximum
distance of 7.5 m.

5 Software Architecture

The overall software architecture is illustrated in Figure 12. The software consists of
several modules organized as a multilayer architecture. This software has been being
continuously developed since RoboCup 2006 based on the strategy structure of
Cornell Big Red 2002’s software.

Fig. 12. The software architecture.

5.1 SSL-Vision

The use of shared vision system named SSL-Vision is required by the competition
rule. This new vision software can be integrated into the system by simply replacing
our Vision Server software. With some code changes in the vision protocol, the
existing software works with the shared vision system successfully. The SSL-Vision
also provides geometric parameters which are very useful for the chip-kicker
calibration.

5.2 VisionServer

The integration of all cameras’ information is done on the VisionServer process. The
information from two cameras which comes from overlapped regions is integrated.
Each detected object is tagged with the confident value based on confident rules.
When the information from two cameras are inconsistent, for example, when there are
more than one of the same type of object from different camera, the server decides on
the higher confident value. Finally, the vision server sends the consistent information
of the whole situation to the BehaviorClient.

5.3 BehaviorClient

The BehaviorClient has three main modules. At the First VisionModule receives
vision information from VisionServer or SimulatorServer and predicts that
information to account for latency. Then StrategyModule gets predicted vision
information from the VisionModule and chooses destinations for all 5 robots. Finally
ControlModule retrieves predicted vision from VisionModule and destinations from
StrategyModule and makes robots go to those destinations.

5.3.1 VisionModule

This module was liable for taking the vision data, extracting velocity information
from it, and predicting the location of the robots and the ball in the future frame.

Our total system latency, measuring from the period between command velocity
and raw velocity, is approximately 133 ms (8 frames). When our robot move at the
fastest speed, that is up to about 3.5 m/s, the distance between real robot position and
the robot position from vision data will grow up about 47 cm. In order to correct this
error we have to estimate the positions and orientations of the robots. The estimation
architecture is shown in Figure 13.

Fig. 13. The architecture of the estimator.

For the opponents and the ball, filtering and estimation were performed using
Kalman filters. For teammate robots, the commanded robot velocities were used to
gain more accurate estimation of their position.

5.3.2 StrategyModule

We have a hierarchical model in our StrategyModule design. The module is rebuilt
from scratch by using strategy structure based on Cornell Big Red 2002.

The StrategyModule consists of multiple Plays. Whenever a Play is executed it
calls the Roles for all Positions present. Then Roles run Skills for the related robots.
All the plays are stored in the PlayBook in an array, while all the skills are stored in
each SkillSet array.

The StrategyModule architecture is depicted in Figure 14. There are five layers,
described in detail below.

Fig. 14. The architecture of StrategyModule.

Play represents a particular global state of the AI and the general goal the positions
are attempting to achieve at any given time. Examples are “OffensePlay”,
“DefensePlay”, “FreekickUsPlay”. During any play, roles for positions that are
present are executed. There are unique roles for each position for each play and plays
do not call skill directly. The system will transition from one play to another when
necessary by PlayTransition, but while in a particular state a particular play is being
executed every frame.

After receiving data from referee box signal, Manager will select the group of play
that suitable for that moment such as “GrazManager” or “SuzhouManager”. Each
Play in Manager is configured by system parameter.

Skill is a basic action of robot, such as “ShootingSkill” or “GetBallSkill”. Each
robot has a set of skills stored in a SkillSet object. Each skill is different and performs
a different function. Skills allow state to be kept because skills are objects with
private data, not just functions as used in the past. In addition, skills provide various
methods for initialization, running, loading and reloading parameters, and much more.

Role is a combo set of skills that call by each position, such as “ForwordRole” or
“GoalieRole”. By the way, both plays and positions can call skill directly but it will
complicate if they have many states. Roles are object that inherit from skill, so they
have same properties with skill.

There exist four robot positions on the field Blocker, Defender, Aggressor, and
Creator. The fifth robot position is called SpecialOp that can take on one of three
dutys: SpecialOpDefender, SpecialOpAggressor, or SpecialOpCreator.

The Blocker remains in the defense zone the majority of the time, only venturing
slightly outside of it at times. The Blocker is the only position that will try to grab the
ball when inside of the goalie box.

The Defender is a dedicated position to the defense. The defender always remains
on our side of the field, almost entirely in the defense zone, and works with or
supplements the actions of the blocker, stopping shots or closing holes whenever
possible.

The Aggressor is the most active player on the field. See a robot who has the ball,
he's undoubtedly the aggressor. See a robot go up to an opponent who has the ball,
either to screen him from our goal or strip the ball away, that is the aggressor.

The Creator is our dedicated robot to creating opportunities. The creator spends the
majority of his time far upfield, either in the kill zone, offensive zone, and sometimes
as low but never lowers than the death zone.

The SpecialOpDefender acts as an auxiliary defender. When available, the
SpecialOpDefender may screen auxiliary opponents who are coming down the field
from getting near the ball. He may also help block passes or shots on goal. Usually he
roams slightly in front of the Defender, or on the opposite side of the field, allowing
him to move upfield and become a SpecialOpAggressor or SpecialOpCreator when
the play changes.

The SpecialOpAggressor assists the aggressor. This means running screens to help
the aggressor dribble up the field, setting up picks for quicker jukes by the aggressor,
and also getting open for quick passes upfield when the aggressor gets bogged down.

The SpecialOpCreator helps the creator create opportunities by screening or
various other blocking techniques. He also gets open for a pass under such scenarios.

5.3.3 ControlModule

ControlModule receives predicted vision from VisionModule and destinations from
StrategyModule and makes robots go to those destinations. So, the essential
component of ControlModule is a path planning algorithm.

Since the World RoboCup 2008 at Suzhou, we have made use of the “Real-Time
Randomized Path Planning for Robot Navigation” [3] for default path planning
algorithm. The path planning developed representation on Rapidly-Exploring Random
Trees (RRTs) as shown in Figure 15.

Fig. 15. The robot path generated from RRT path planner.

1
2

3

4

1f

2f

3f

4f

dd

dd

rx

ry

ex

ey


1

2

3

4

1f

2f

3f

4f

dd

dd

rx

ry

1
2

3

4

1f

2f

3f

4f

dd

dd

rx

ry

ex

ey



Fig. 16. Wheel configuration of the robot.

5.3.4 Modified Robot Kinematics

Normally, when the software sends the velocity command to the robot, it doesn’t
perform any velocity feedback control and it assumes that the robot’s motion
controller has already taken care of this. But due to the loss from friction, wheel
slippage and other real world problems, the robot cannot move as fast as commanded.
The regular robot kinematics describes an ideal situation where there’s no system
disturbance. In order to control the robot more accurately, the robot kinematics is
modified with the some disturbance parameters. The friction force and traction torque
vector are defined.

The normal kinematics can be written as:
†()earth command    (1)

where,

 T
earth x y    

 

T
command       1 2 3 4

   

cos sin cos sin sin sin cos cos

cos sin cos sin sin sin cos cos

cos sin cos sin sin sin cos cos

cos sin cos sin sin sin cos cos

d

d

d

d

       
       


       
       

       
        
       
 

       

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

† is the pseudo inverse of the kinematic equation

Equation (1) is lack of information about surface frictions. Therefore, if robot

trajectories are generated from equation (1), those trajectories cannot guarantee the
real robot velocity and position. The modified kinematic model is introduced in order
to modify the robot kinematic with friction parameters. Let the modified kinematics
of the mobile robot be described by

†()earth command        (2)

where,
 is the Viscous friction matrix (velocity friction)

 is the Coulomb friction vector (surface friction)

From the experiment, friction can be separated into two friction, coulomb friction
and viscous friction. Coulomb friction vector () is a constant vector according to
time while viscous friction matrix () is a function of the specific angular velocity of

the robot (independent of time). The coulomb friction vector is easily found by
experiment since this friction is constant for specific surface but the viscous friction
cannot be found by simple experiment. Although the viscous friction is linearly
dependent on an angular velocity of the robot chassis but this friction is a non-linear
function when it’s transformed to time domain. The viscous friction can be
approximated to the linear third-order polynomial. In order to find the viscous friction
matrix, the captured robot velocity in the earth frame is used. Let consider

captured earth  

 (3)

 where,

captured is a captured robot velocity by bird eye view camera
 is a measurement noise

And

†

_earth ideal command  

 (3)

where,
_earth ideal is a ideal velocity of a robot when robot motors are motorized at

command speed command

Define the error function at particular time, by this definition  is constant for the

specific angular velocity at a time.
 _captured earth ideae   (4)

Evaluated equation (4) as following:

_

†

† †

† †

()

captured earth idea

earth command

command command

command command command

command

e

e

 

   

     

      
  



 

  

  

 





  

   

   (5)

Idea is find the  matrix by using Least Square Error (LSE) approximation. But if

we develop equation (5) as a normal procedure, the inverse of term
()T

command command  is not exist because det()T
command command  is always zero. In order

to solve this problem, the Kronecker product is used. The Kronecker product is a
operator transform a regular matrix multiply to a block matrix as:

[]ijA B block a B  (6)

If A is m n and B is s t , then A B is an ms nt matrix. Kronecker
production is used to rearrange an order of command  , and then the LSE is possible.

After apply the index modification, the final form of the transformation can be
defined as:

Let m lA R  and l mX R  then

()TmAX B I X a b    


 (7)

 where,

 ,a b


are the vector version of the matrix ,A B respectively

Equation (5) can be rearranged by Kronecker Product as the following process:

1. Let () , ,commandy e x A       

then () commande y Ax        

2. Solve ()Tmxn nx mx m mnxA x y I x A y   1 1 1



3. Viscous friction matrix (now in vector form) =

(() ()) ()T T T T T
mnx m m mA I x I x I x y      1

1



After viscous friction matrix is found, the experiment can be retest again in order to
lower the measurement error.

Figure 17 and 18 show the captured data from vision system and the result after the
viscous friction of the matrix is approximated respectively. Since there are
measurement noises therefore these viscous matrix parameters are needed to average
and their means are the representatives of their group. We use this average viscous
friction matrix as our viscous matrix at particular time.

Although, the viscous friction matrix is found but it represents only at specific
angular velocity of the robot at a particular time therefore the parameters of the matrix
in other angular velocity are needed to be found by repeating the experiment, and then
fitted into polynomial curve as mentioned before.

Fig. 17. Linear velocity of the robot in Earth frame []Tx y  

Fig. 18. Approximated viscous friction matrix parameters.

Fig. 19. Useable region of the velocity data.

By using modified kinematics to generate the control command, the robot can
move more accurately. The comparison of the experimental result is shown in Figure
20.

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

R
ob

ot
 V

el
oc

it
y

(m
/s

)

Command

Observed

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

R
ob

ot
 V

el
oc

it
y

(m
/s

)

Command

Observed

Fig. 20. The robot observed velocity profile using normal kinematics (top)

and modified kinematics (bottom).

5.4 RadioServer

Commands which are generated from two individual StrategyModules are
encapsulated into a single packet in the RadioServerModules. After commands are
packed, the module will send this packet to the wireless board via a USB port. We use
full duplex communication for our system in order to get some information form
robots in real-time. Therefore, this RadioServerModule is also used to receive the
send-back data and return it to each StrategyModule.

5.5 SimulatorServer

Our SimulatorServer is developed in order to simulate robot hardware behavior. The
SimulatorServer receives a sequence of packets which is identical to packets that are
sent to real robots then calculates some simple physics and returns the coordinate of
objects in the field to the software as same as the VisionServer does. Our
SimulatorServer is entirely independent from AI System which is capable of
simulating all the field objects and latency of the system.

The field objects are simulated by physics engine library called Open Dynamics
Engine (ODE) [12]. The SimulatorServer provides connection socket for some two AI
systems which means that the simulator is capable to simulate a real competition
situation.

5.6 Kicker Automatic Calibration

The automatic calibration system is added to the software in order to reduce
manpower and time during the team setup process. The calibration software performs
sets of experiment in order to obtain the relationship between input and output
parameters. Similarly to the motion controller calibration method described in section
2.1, the kicker calibration software is used to estimate the relationship between both
the chip-kicking distance or ball speed and the magnitude of the kick command sent
to the robot. In the calibration procedure, the speed of the ball is easily obtained from
the vision module while the chip-kicking distance requires trajectory estimation
method based on the model given in [4]. This method uses the camera parameters
from the SSL-Vision and several ball positions in consecutive frames to approximate
the actual trajectory of the ball in the air. Given the parabolic trajectory of the ball, the
falling point is calculated and the chip-kicking distance is obtained. The snapshots of
the calibration process of the chip-kicker are shown in Figure 21 and 22. The
relationship is then modeled using second order polynomial and can be estimated
from the experimental results using least squares polynomial fitting. The example of
the kicker calibration result is shown in Figure 23.

Fig. 21. Snapshots of the chip-kicker calibration process.

Fig. 22. Parabolic trajectory of the chip-kicked ball.

y = -0.0007x2 + 0.2043x - 3.2776

0

2

4

6

8

10

12

14

0 50 100 150 200 250

B
al

l S
p

ee
d

 (
m

/s
)

Kick Magnitude

+ Observed

― Estimated

Fig. 23. Relationship between the ball speed and the magnitude of the kick command obtained

using second order polynomial least squares fitting.

6 Conclusion

Table 1. Competition results for Skuba SSL RoboCup team.

Competition Result
RoboCup Thailand Championship 2005
RoboCup Thailand Championship 2006

RoboCup 2006
RoboCup Thailand Championship 2007
RoboCup Thailand Championship 2008

RoboCup 2008
RoboCup 2009

RoboCup China Open 2009

3rd Place
Quarter Final
Round Robin

3rd Place
2nd Place
3rd Place
1st Place
1st Place

Our system has been continuously improving since the beginning. Last year, we
introduced some improvements about the low level motion controller and the robot
hardware. The new calibration software for this year was proven to be very useful. In
RoboCup China Open 2009, the automatic calibration software greatly reduced the
amount of team setup time which allowed us to focus more on the strategic planning.
The software which runs the robot team was built in 2006 and improved each year. It
has given us very successful competition results for the last several years, the results
are summarized in table 1. We hope that our robot team will perform better in this
year and we are looking forward to sharing experiences with other great teams around
the world.

References

1. Falin, J.: Minimizing Ringing at the Switch Node of a Boost Converter. Application report,
Texas Instruments Inc. (2006)

2. Fosler, R.: Generating High Voltage Using the PIC16C781/782. Application note,
Microchip Technology Inc. (2005)

3. Bruce, J., Veloso, M.: Real-time randomized path planning for robot navigation. In:
Proceedings of the IEEE Conference on Intelligent Robots and Systems. (2002)

4. Kim, T., Seo, Y., Hong, K.S.: Physics-based 3d position analysis of a soccer ball from
monocular image sequences. Sixth International Conference on Computer Vision (1998)
721–726

