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Abstract. In this paper we present an overview of CMDragons 2010,
Carnegie Mellon’s entry for the RoboCup Small Size League. Our team
builds upon the research and success of RoboCup entries in previous
years. The overview describes both the robot hardware and the general
software architecture of our team. Technical improvements include a new
attacker control system, a short-term physics-based motion planner, and
an experimental system for inferring opponent state from ball dynamics
observations.

1 Introduction

Our RoboCup Small Size League entry, CMDragons 2010, builds upon the on-
going research used to create the previous CMDragons teams (1997-2003,2006-
2009) and CMRoboDragons joint team (2004, 2005). Our team entry consists of
five omni-directional robots that are wirelessly controlled by an offboard com-
puter. Sensing is provided by two overhead mounted cameras via the SSL-Vision
system. This paper describes the robot hardware and the offboard control soft-
ware required to implement a robot soccer team.

2 System Overview

Our team consists of five homogeneous robot agents. In Figure 1, an example
robot is shown with and without a protective plastic cover. The hardware is
mostly the same as used in RoboCup 2006-2009. We believe that our hardware
is still highly competitive and allows our team to perform close to optimal within
the tolerances of the rules. One noticable hardware improvement for 2010 how-
ever, is a new dribbler-mount assembly, better protecting the robot’s infrared
sensors and dribbler motor. Besides this hardware improvement, we focus most
of our efforts on improving the software to fully utilize the robots’ capabilities
instead.

2.1 Robot Hardware

Each robot is omni-directional, with four custom-built wheels driven by 30 watt
brushless motors, each featuring a reflective quadrature encoder. The kicker is
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Fig. 1. A CMDragons robot shown with and without protective cover.

a large diameter custom wound solenoid attached directly to a kicking plate.
It is capable of propelling the ball at speeds up to 15m/s, and is fully variable
so that controlled passes can also be carried out. The CMDragons robot also
has a chip-kicking device, implemented by a custom-made flat solenoid located
under the main kicker, which strikes an angled wedge visible at the front bottom
of the robot. It is capable of propelling the ball up to 4.5m before it hits the
ground. Both kickers are driven by a bank of three capacitors charged to 200V .
Ball catching and handling is performed by a motorized rubber-coated dribbling
bar which is mounted on an hinged damper for improved pass reception. A more
detailled description of the robot’s design and electronics can be found in [1].

Our robot is designed for full rules compliance at all times. The robot fits
within the maximum dimensions specified in the official rules, with a maximum
diameter of 178mm and a height of 143mm. The dribbler holds up to 19% of the
ball when receiving a pass, and somewhat less when the ball is at rest or during
normal dribbling. The chip kicking device has a very short travel distance, and at
no point in its travel can it overlap more than 20% of the ball due to the location
of the dribbling bar. While technically able to perform kicks of up to 15m/s, the
main kicker has been hard-coded to never exceed kick-speeds of 10m/s for full
rule compliance.

2.2 Software

The software architecture for our offboard control system is shown in Figure 2. It
follows the same overall structure as has been used in the previous year, outlined
in [2, 1]. The major organizational components of the system are a server program
which performs vision and manages communication with the robots, and two
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Fig. 2. The general architecture of the CMDragons offboard control software.

client programs which connect to the server via UDP sockets. The first client
is a soccer program, which implements the soccer playing strategy and robot
navigation and control, and the second client is a graphical interface program
for monitoring and controlling the system.

The server program consists of vision input, tracker, radio, and a multi-
client server. The vision input is supplied via ethernet from the RoboCup SSL
shared vision system SSL-Vision [3]. Some of the integration details are described
in section 3 of this paper. Tracking is achieved using a probabilistic method
based on Extended Kalman-Bucy filters to obtain filtered estimates of ball and
robot positions. Additionally, the filters provide velocity estimates for all tracked
objects. Further details on tracking are provided in [4]. Final commands are
communicated by the server program using a RS232 radio link.

The soccer program is based on the STP framework [4]. A world model
interprets the incoming tracking state to extract useful high level features (such
as ball possession information), and act as a running database of the last several
seconds of overall state history. This allows the remainder of the soccer system
to access current state, and query recent past state as well as predictions of
future state through the Kalman filter. The highest level of our soccer behavior
system is a strategy layer that selects among a set of plays [5, 6]. Below this we
use a tree of tactics to implement the various roles (attacker, goalie, defender),
which in turn build on sub-tactics known as skills [4]. One primitive skill used
by almost all behaviors is the navigation module, which uses the RRT-based
ERRT randomized path planner [7–9] combined with a dynamics-aware safety
method to ensure safe navigation when desired [10]. It is an extension of the
Dynamic Window method [11, 12]. The robot motion control uses trapezoidal
velocity profiles (bang-bang acceleration) as described in [13, 4]. Additionally, our
system features a detailed physics-based simulator based on rigid-body dynamics
as described in [2]. Two improvements to our software this year are an improved
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control system for the Attacker robot behavior (see section 4), as well as a short-
term physics-based motion planner (see section 5) for improved ball dribbling.

3 Vision Hardware and Software

CMDragons 2010 operates using SSL-Vision as its vision system [3]. In our lab,
we use two Firewire 800 cameras (AVT Stingray F-46C) which provide a 780×580
progressive video stream at 60Hz. SSL-Vision is released as open source and
is therefore available to all teams. In order to use SSL-Vision, the “Vision”
component in Figure 2 represents a network client that receives packets from the
SSL-Vision system. These packets will contain the locations and orientations of
all the robots, as well as the location of the ball. However, data fusion of the two
cameras and motion tracking will continue to be performed within our system,
as SSL-Vision does not currently support such functionality.

For competing in RoboCup 2010, SSL-Vision provides several advantages
compared to CMDragons pre-2009 system. One major improvement is the ge-
ometry calibration of the cameras. Our previous system required the use of
paper calibration patterns to be carefully placed on the field for calibration pur-
poses. SSL-Vision does not require any such calibration patterns and can be fully
calibrated through its user interface. Another improvement is that SSL-Vision
provides direct access to all DCAM parameters of our Firewire cameras, thus
allowing configuration of settings such as exposure, white balance, or shutter
speed, during runtime. Finally, SSL-Vision contains a very open and extendible
architecture, allowing the interchangeability of different image processing “plug-
ins”. This will allow teams to develop their own improvements and extensions to
the system, such as faster image processing algorithms or improved calibration
routines. It furthermore allows quick switching and performance comparisons
between such plugins.

4 The Attacker Control System

The CMDragons robots perform motion profiling off-board, on the central com-
puter. This raises three problems, namely:

System latency: Latency in the control loop introduces a phase delay between
the expected and actual motion profiling. This however is minimized by
forward-predicting the observed world state and computing the motion pro-
file on this future state.

Hesitation: Precise motion control can lead to pauses while changing target
locations due to switching of motion profiles.

Underperformance: The robot’s motion profile is computed using expected
robot acceleration and top speeds, although the true values might differ,
and in certain cases the robot might actually be capable of exceeding the
expected values.
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To counter the effect of these problems, we implemented an “Attacker Control
System”. The Attacker Control System has two main features:

1. The motion profile parameters (acceleration and velocity limits) are separate
for AI calculations and for execution. Specifically, the parameters used for
AI calculations are more conservative than the true robot parameters, while
the execution parameters marginally exceed the true parameters.

2. Intercept and target locations are explicitly modified by a proportional-
derivative (PD) controller

The PD controller is implemented as follows. Let the target location of the
attacker, as computed by the AI be denoted by ld. Let the current robot location
be denoted by lr. The modified target location l̃d is given by,

l̃d = ld + kp(ld − lr) + kd
d(lr)
dt

(1)

The proportional and derivative gains kp, kd are hand-tuned, and two separate
sets are used during the acceleration and the deceleration stages. The modified
target location l̃d is then used for motion profiling using the execution motion
profile parameters.

5 Physics-Based Short-Term Motion Planner

One major problem in Small Size robot soccer is ball manipulation. Traditional
navigation planners, such as ERRT, are typically used to provide robot paths or
trajectories that are unaware of inter-body dynamics, including ball manipula-
tion. Because these motion planners have no awareness of the ball’s dynamics,
they tend to generate paths that are unlikely to be dynamically sound in terms
of ball dribbling. While the generated paths are safe in terms of avoiding colli-
sions with other robots, it is not likely that the ball will remain in front of the
robot when it begins to execute the solution (due to e.g., the build-up of the
ball’s inertia that was not modeled during planning). To alleviate this problem,
we introduce and integrate a short-term physics-based motion planner that is
aware of multi-body dynamics.

We define the motion planning problem as follows: given a state space X,
an initial state xinit ∈ X, and a set of goal states Xgoal ⊂ X, a motion planner
searches for a sequence of actions a1, . . . , an, which, when executed from xinit,
ends in a goal state xgoal ∈ Xgoal. Additional constraints can be imposed on all
the intermediate states of the action sequence by defining only a subset of the
state-space to be valid (Xvalid ⊆ X) and requiring that all states of the solution
sequence xinit, x1, x2, . . . , xgoal are elements of Xvalid.

A physics-based planner uses domain models that aim to reflect the inherent
physical properties of the real world. The Rigid Body Dynamics model [14] pro-
vides a computationally feasible approximation of basic Newtonian physics, and
allows the simulation of the physical interactions between multiple mass-based
non-deformable bodies. The term Dynamics implies that rigid body simulators
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are second order systems, able to simulate physical properties over time, such
as momentum and force-based inter-body collisions. Physics-Based Planning is
an extension to kinodynamic planning [15], adding the simulation of rigid body
interactions to traditional second order navigation planning [16].

5.1 Domain Model and Parameters

A rigid body system is composed of n rigid bodies r1 . . . rn. A rigid body is
defined by two disjoint subsets of parameters r = {r̂, r̄} where
• r̂ : the body’s mutable state parameters,

• r̄ : the body’s immutable parameters.
r̂ is a tuple, containing the second order state parameters of the rigid body,

namely its position, orientation, and their derivatives:

r̂ = 〈α, β, γ, ω〉

where
• α : position (3D-vector),

• β : orientation (unit quaternion or rotation matrix),

• γ : linear velocity (3D-vector),

• ω : angular velocity (3D-vector).
r̄ is a tuple r̄ = 〈φShape, φMass, φMassC, φFricS, φFricD, φRest, φDampL, φDampA〉,

describing all of the rigid body’s inherent physical parameters, namely: 3D shape,
mass, center of mass, static friction, dynamic friction, restitution, linear damp-
ing, and angular damping. With the exception to φShape (which is a 3D mesh or
other 3D primitive) and φMassC (which is a 3D vector), all parameters are single
finite continuous values.

The physics-based planning state space X is defined by the mutable states
of all n rigid bodies in the domain and time t. That is, a state x ∈ X is defined
as the tuple

x = 〈t, r̂1, . . . , r̂n〉.

The action space A is the set of the applicable controls that the physics-based
planner can search over. An action a ∈ A is defined as a vector of sub-actions
〈a1, . . . , an〉, where ai represents a pair of 3D force and torque vectors applicable
to a corresponding rigid body ri.

A physics-based planning domain d is defined as the tuple d = 〈G, r̄1 . . . r̄n,M〉
where
• G : global gravity force vector,

• r̄1 . . . r̄n : immutable parameters of all n rigid bodies,
A physics-based planner searches for solutions by reasoning about the states

resulting from the actuation of possible actions. The state computations are
performed by simulation of the rigid body dynamics. There are several robust
rigid body simulation frameworks freely available, such as the Open Dynamics
Engine (ODE), and NVIDIA PhysX. Frequently referred to as physics engines,
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Fig. 3. A physics engine computes state transitions.

these simulators are then used as a “black box” by the planner to simulate
state transitions in the physics space (see Figure 3). We define the physics state
transition function e:

e : 〈r̂1, . . . , r̂n, a, d,∆t〉 → 〈r̂′
1, . . . , r̂

′
n, L〉.

Given a current state of the world x, the simulation function e supplies the con-
tained rigid body states r̂1, . . . , r̂n and a control action vector a to the physics en-
gine. Using the parameters contained in the domain description d, the physics en-
gine then simulates the rigid body dynamics forward in time by a fixed timestep
∆t, delivering new states for all rigid bodies r̂′

1, . . . , r̂
′
n. These rigid body states

are then stored in the new resulting planning state x′ along with its new time
index t′ = t+∆t. Additionally, e also returns a list of collisions L = 〈l1, l2, . . . 〉
that occurred during forward simulation. Each item l ∈ L is an unordered pair
l = 〈λ1, λ2〉, consisiting of the indices of the two rigid bodies rλ1 , rλ2 involved in
the collision.

5.2 Planning and Execution

To efficiently plan in this physics-based space, we use the Behavioral Kino-
dynamic Balanced Growth Trees (BK-BGT) algorithm [17, 16]. It needs to be
noted, however, that physics-based planning is computationally extremely ex-
pensive, due to the rich detailed simulations of multi-body dynamics. Addition-
ally, because we are planning through a second-order timespace, the search space
is extremely large. Effectively, this means that a full search to the goal state (i.e.,
the ball being in the opponent’s goal-box) is infeasible. Furthermore, it is un-
likely that such a long-term plan will ever succeed, due to the unpredictability
of the opponent team and other factors of uncertainty.

To overcome these issues, we integrate our physics-based planner in a finite-
horizon fashion where we limit its search to take less than one frame period and
therefore limit the resulting tree to several hundred nodes (with ∆t = 1/60s) on
the current hardware. We evaluate these partial solutions heuristically, prefer-
ring nodes that lead the ball closer to its goal state and further away from oppo-
nents. The resulting path is executed for several frames, before the physics-based
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planner is invoked again to replan. This replanning interval was tweaked exper-
imentally. More frequent replanning (e.g., on every frame), creates unnecessary
oscillations, whereas less frequent replanning struggles with too much build-up
in the domain’s uncertainty. Figure 4 shows the integration of the physics-based
planner (“Planning” indicates planner invokation, “Plan” represents the solution
generated by the physics-based planner).

Fig. 4. Physics-based planner integration into the CMDragons execution environment.

6 Opponent state inference through observations of ball
dynamics

Teams in the RoboCup Small Size League rely heavily on the existing global
localization system. The weakness of this approach became very clear during our
quarter-final game at RoboCup 2009. Due to an unexpected bug in our robot
server component, the system failed to correctly associate the opponent robot
locations reported by SSL-Vision with our system’s previous internal opponent
state observations. The result was that the system saw opponent robots heavily
flickering and moving across the field, even though they were indeed mostly
stationary (see Figure 5). Playing with these observations became impossible
as our tactical system was not able to deal with this unexpected oscillation in
input. Therefore, during our final timeout, we decided to proceed in the game
without opponent vision. The result was slightly more stable tactical behavior,
but an inability to score, because we did not see their goalie or defender robots.
In the end we lost this game 0-1 and were eliminated from the quarter-finals.

The events of this game led us to rethink some of our general sensing strate-
gies and engaged us to develop an experimental system that is able to infer
opponent state solely through the observations of the ball’s dynamics, without
relying on any opponent localization data reported from the vision system. We
explain an outline of the algorithm and report first experimental results.

6.1 Algorithm

We introduce the function PredictPosition (see Algorithm 1) to detect robot
positions from ball state observations. Our approach to the problem assumes
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Fig. 5. False motion estimates due to a failure of the server component. Blue lines
show falsely interpolated motions of opponent robots.

Fig. 6. The ball (orange line) deflecting off of a seemingly invisible obstacle (goalie).

that vision data on the ball is reliable and that the opponents are relatively
static. By tracking the ball’s position over time, we can calculate the slope and
the change in slope. Let k be the number of frames we will examine in our
window of time. Each frame lasts 1/60th of a second. For each consecutive pair
of frames, let us calculate its slope. For each consecutive pairs of slopes (change
in angle), mark as true if the difference between the two slopes is greater than
some threshold α. We say a collision occurred if we detected a significant angle
change in the middle of the window. We can then estimate the position of the
robot based on location of the collision. Figure 6 shows an example of a ball
trajectory that would generate a valid estimate through our algorithm.

6.2 Results and Discussion

We ran trials using no vision, perfect vision, and our algorithm with the former
two being the control groups. The opponent team consists of three robots: a
goalie and two defenders. The goalie would sit stationary at the position (2900,
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Algorithm 1: PredictPosition
frames[k];
slopes[k − 1];
changes[k − 2];
for i← 0 to k − 1 do

frames[i]← frames[i+ 1]; // Make room for new frame

frames[k − 1]← ballLoc; // Record ball location

for i← 0 to k − 2 do
slopes[i]← CalcSlope(frames[i+ 1], frames[i]); // Record slopes

for i← 0 to k − 3 do
if abs(slopes[i+ 1]− slopes[i]) > α then

changes[i]← true; // Deflection occurred

if i 6= (k − 2)/2 then
return false; // More than one deflection occurred

else
changes[i]← false;

if changes[(k − 2)/2] then
return frames[k/2]; // Deflection detected

else
return false;

0) where (0,0) is the center of the field. The two defenders were placed at (2500,
-400) and (2500, 300). The kicker robot shot 50 shots total from 5 different
positions. For each shot, we recorded whether or not a goal was made.

As expected, in the trial with no vision, the robot was unable to score a goal
reliably. Out of 50 shots, it scored 5 goals by luck when the ball bounced off
the goalie and then bounced off a defender into the goal. In the trial with full
vision, the robot scored nearly every shot. Out of 50 shots, it missed 5 shots due
to system inaccuracies.

When the trial was run using our algorithm, it ran similarly to the trial with
full vision. The first shot would miss the goal because it deflected off the goalie
but after this ”learning phase”, all subsequent shots went in. Out of the 50 shots
made, 5 only shots were not scored. This is consistent with our hypothesis that
we can infer static robot positions solely from ball dynamics observations.

A remaining limitation of this approach is of course that it assumes stationary
opponents. Nevertheless, this approach could have been a deciding factor in
our 2009 quarter final game, as it would likely have provided a relatively good
estimate of the opponent’s goalie, thus allowing our attacker to aim into the
goal’s open area. While we don’t anticipate a similar vision failure in the future,
the presented approach should be considered as a valid emergency strategy.
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Competition Result

US Open 2003 1st
RoboCup 2003 4th
RoboCup 2004 4th 1

RoboCup 2005 4th 1

US Open 2006 1st
RoboCup 2006 1st
China Open 2006 1st
RoboCup 2007 1st
US Open 2008 1st
RoboCup 2008 2nd
RoboCup 2009 Eliminated during quarter-final

Table 1. Results of RoboCup small-size competitions for CMDragons from 2003-09

7 Conclusion

This paper gave a brief overview of CMDragons 2010, covering both the robot
hardware and the software architecture of the offboard control system. The hard-
ware has built on the collective experience of our team and continues to advance
in ability. The software uses our proven system architecture with continued im-
provements to the individual modules. The CMDragons software system has been
used in three national and seven international RoboCup competitions, placing
within the top four teams of the tournament every year since 2003, and finishing
1st in 2006 and 2007. The competition results since 2003 are listed in table 1.
We believe that the RoboCup Small Size League is and will continue to be an
excellent domain to drive research on high-performance real-time autonomous
robotics.
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