
ZJUNlict
Extended TDP for RoboCup 2013

Yonghai Wu, Yue Zhao, Yifan Shen, Chuan Li,
Li Fang, Hangjun Tong and Rong Xiong

National Laboratory of Industrial Control Technology
Zhejiang University

Zheda Road No.38,Hangzhou
Zhejiang Province,P.R.China

cliffyin@zju.edu.cn
http://www.nlict.zju.edu.cn/ssl/WelcomePage.html

Abstract. ZJUNlict have participated in Robocup for about nine years
since 2004. In this paper, we summarizes the details of ZJUNlict robot
soccer system we have made in recent years. we will emphasize the main
ideas of designing in the robots’ hardware and our new software systems.
Also we will share our tips on some special problems.

1 Introduction

Our team is an open project supported by the National Lab. of Industrial
Control Technology in Zhejiang University, China. We have started since 2003
and participated in RoboCup 2004-2012. The competition and communication
in RoboCup games benefit us a lot. In 2007-2008 RoboCup, we were one of the
top four teams in the league. We also won the first place in Robocup China
Open in 2006-2008 and 2011. Last year, we won the second price in Mexico City,
which is a great excitation to us. And we incorporate what we have done in
recent years to this paper.

Our Team members come from serveral different colleges, so each member
can contribute more to our project and do more efficient job.

Team Leader Yonghai Wu (AI)
Team Member – AI: Yue Zhao, Qun Wang, Hangjun Tong, Xiaohe Dai

– Electronic: Yifan Shen, Chuan Li, Li Fnag

2 Hardware Architecture

2.1 Robot

Components of the Robot Our robots are equipped with 4 omni-directional
wheels. Each is driven by a 30 watt brushless Maxon motors which help our
robot run with about 3.0m/s and 6.0m/s2. The reduction ratio of the gearbox

(a) Robot (b) Model

Fig. 1. Our Robots

with internal spur gear is 4:1. Besides there are three major machinery devices:
a dribbling device, a shooting device and a chipping device. We redisigned the
omni-wheels to reduce the friction between the small passive wheels and the
driving wheel so that our robot’s movement is smoother. We spend a lot of time
testing the dribber materail in order to choose a satisfactory one. The robot is
shown in Figure 1(b).

Our circuit architecture is FPGA based all-in-one solution as the central
processor module. Our motor driving part is a stable module based on MC33035,
which has been developed to complete the four years since 2007 in Atlanta.

Fig. 2. Schematic Diagram

There is an encoder module to form a local feedback control loop. A com-
mercial wireless module based on nRF2401 is used on our robot. Meanwhile, we
develop a new communication system between the PC and robots. We choose
two smaller capacitors with higher voltage, to achieve a better result. They will
help us save more power and permit several shots in short intervals. In addition,
we have set module, power monitor module, IR detector module, and so on, in

order to complete the functions of our robots. We use Protel Altium Designer
6.0 to layout the PCB board.

Mechanical Design Omni-directional Wheel Design Each wheel is composed
of a big aluminous wheel with 18 grooves distributed equably in Circle, there is a
small wheel founded with PM in every groove. Similarly, there is a groove in the
small wheel, covered by a o-ring. The omni-directional wheel is shown in Figure
3(a) In RoboCup 2008, the wheel exhibited some problems, such as large gap
and friction. Now the wheel is redesigned in some details, and receives a perfect
performance. Except the wheels, we do not change a lot in the other parts. To
improve the manufacture precision, we make all the parts with CNC machine
tools.

(a) Omni-directional wheel (b) Flat-kick device

(c) Chip-kick device (d) Dribbling device

Fig. 3. Mechanical Parts

Shooting Device Design The robot’s shooting device is the primary method
of both scoring and passing. It is made up of a an electromagnet and a
simple mechanical structure. The electromagnet is made by ourselves and is
calculated accurately in advance. It is drive by two big capacitors which is
fixed on the floor board above. Since RoboCup 2007, we are pleased with
our shooting devices and don’t change a lot. It is shown in Figure 3(b).
The shooting device can give the ball a maximum velocity of 10m/s. In the
match, it is controlled by the circuit, the time and the force of kicking the
ball is also in charge. This part of the robot is usually cooperate with others,
such as the chipper,the dribbler.

Chipping Device Design The chipping device allows the robots to pass the
opponent by kicking the ball into the air. As same as the shooting devices, it
is also drive by two capacitors, the method to control it is also the same. It
is shown in Figure 3(c). When the chipping device works, the shovel close to
the ground can chip the ball to a maximum height of 0.8m and a maximum
length of 3.2m. The angle of the shovel and the height between the chipping
pole and the ground influence the performance most. When the ball falls to
the ground, it is a litter difficult for the partner to get the ball steadily and
quickly. Because of the elasticity of the ball and ground both play important
parts.

Dribbling Device Design The dribbling device is the assembly that controls
the ball. It is designed to stop a ball, control it and prevent losing it. The
dribbling device is drive by a motor, accelerated by a pair of gears. A stick
swathed with a special pipe circum gyrates when the ball comes close to the
robot or it must compete for the ball with the opponent. From Robocup
2006 at Bremen, we found that the ball controlling ability is not very sat-
isfactory, these years, we have tried many ways to improve it. We get a lot
of experiences, receive a much better result now. It is shown in Figure 3(b).
The higher rotate speed the motor circum gyrate, the bigger force the ball is
given, but on the other hand, the ball will be easier to lose control. To get a
better effect, we redesigned the limit device, besides we spend a lot of time
choosing the material.

Electronic Design

Driving Peripheral Design There is a local feedback control loop on the
robot. Motor driving module based on a self constructed verilog module
which consists of a rotor position decoder for proper commutation sequenc-
ing, temperature compensated reference capable of supplying sensor power,
frequency programmable saw tooth oscillator, three open collector top driver-
s, and three high current totem pole bottom drivers ideally suited for driving
power MOSFETs, Can Efficiently Control Brush DC Motors with External
MOSFET H-Bridge.(Figure 4)

Communication Peripheral Design Our communication system is based
on the module of NRF2401. NRF2401 is a single-chip radio transceiver for
the world wide 2.4 - 2.5 GHz ISM band. The transceiver consists of a fully
integrated frequency synthesizer, a power amplifier, a crystal oscillator and a
modulator. Output power and frequency channels are easily programmable
by use of the 3-wire serial interface. This year, a new communication system
has been developed to reach better results. The new communication system
is based on two RF modules on the robot. They were two separate modules,
respectively charging for receiving and sending. Compared to last year, data
transferred from the pc to robot, is encoded to a larger packet. All of the
robot on the ground can receives the same packet at the same time, and
pick up the right information with the numbers of themselves. the right
information picked up from the large packet includes the speed of every

Fig. 4. Motor Drive Diagram

wheels, shoot or chip command, the number of robot. Thus, every robot can
receive the order without delay. Meanwhile the robots can send a packet to
the pc. However, there is only one robot can send packet that contains useful
information to pc. The PC can receive information from the robot without
any delays. So the command sent from the pc can be implemented more
effectively and timely.

Shooting Peripheral Design Compared to previous years, our Shooting sys-
tem (Figure 5)is not changed too much this year. Our boosted circuit in-
cludes a PWM control module and voltage control module, to control the
boost capacitor voltage. FPGA sent chip or flat shoot signal, through con-
trol circuit for chip or flat shoot. However, we choose two smaller capacitors
with higher voltage, to achieve a better result. The kicks are driven by two
4700uF capacitors charged to 190V . The kicker can give the ball a maximum
velocity of 10m/s. With the increased voltage, the velocity will be faster.

Fig. 5. Shoot Diagram

3 Emebedded Software

Since RoboCup 2007 in Atlant, Our circuit architecture use the NiosII as
the central processor module which is a soft IP provided by Altera company
matching at QuartusII9.1 and NiosII9.1 software programming environment. The
overview of our embedded software flow is show in Figure 6.

Fig. 6. Emebedded Software Flowchart

3.1 Motor PID Control

About the encoder module, we use a 512 gratings encoder with a decoder
constructed by Verilog. It will count how many gratings it has detected in 2 ms,
and then translated to the angular velocity of the motor, while it determine the
direction of the velocity by phase difference between channel A and B which are
quadrature signals shifted by 90. Based on the velocity we detect and the set
velocity we desire, we can caculate the expected PWM duty with PI algorithm
and the send it to the motor control module.

Based on our motor driver module (Figure 7), we use an incremental PID
algorithm, real-time code set encoding to read the speed of motor for PI and
PID control, so that motor speed can reach the stable speed settings. About
the encoder module, we use AM512, which is a compact solution for angular
position sensing. The IC senses the angular position of a permanent magnet
placed above the chip. So we put the permanent magnet on the motor, when
the motor rotation, FPGA board will receive the Incremental signal from the
encoder module. There are two signals for incremental output: channel A and
channel B. Signals A and B are quadrature signals, shifted by 90. The speed of
the motor can be count by the signals.

Fig. 7. Motor Control Diagram

3.2 Uploading function

This season, we add uploading function when the referee box state is STOP
during the normal game. Although in normal situations, robots will not upload
messages until the game state (such as ball in the mouth) is changed. However,
this time, robots will have the function of uploading information about their
own states. The realization of function is divided into two parts, upper comput-
er asking and computer answer and specified as follow: When the referee box
is clicked to send a STOP message, the upper computer will set a flag bit in
the special position in the data packet sent to the robot, which is called upper
computer asking and is totally different from our normal communication proto-
cols. And if the robot finds the flag bit match its own car number, the robot will
go into a different state of decoding data packets. They will check some of its
status including whether the infra is good or bad, the value of battery voltage
and the value of capacitance voltage through some hardware characteristic. For
example, it checks infra state through reading electrical level state of one pin
of FPGA for several times. After finishing checking, these data will be sent to
upper computer. This procedure is called robot answer. This way, we will avoid
many troubles to check states of robots. Firstly, we do not need to call for a sus-
pension to check the robot of every state. Secondly, we can get the information
of all robots in the same time instead of checking them one by one.

However, when checking states, we must ensure that our normal competition
is not disturbed. Therefore, for the reason that the ”STOP” time is short, we
must limit the times of upper computer asking. Upper computer asking is as
bellows: Firstly, upper computer will set that flag bit in different special position
one by one in terms of robot number to make sure that all six robots will be
asked. The cycle of upper computer asking is 16ms, and upper computer will ask
each robot at most 10 times. Secondly, if asking one robot for 10 times without

answer, upper computer will give up and ask for the next robot. After lots of
tests, we find that the whole procedure can be finished in 0.5s and the percentage
of getting all six robots’ information can reach over 90

Using this function, when the pause of the match, we don’t need to go to
the playing field to check whether our robots are good or not. It’s much more
convenient.

3.3 LabVIEW real-time detection for robot motion

As we know, a good motion control is based on the precise and rapid data
feedback. Because of the limit of the detection method, we cannot get the signal
we want freely. Besides, some of the signal is parameter of the program which
can never be detected by the instrument like oscilloscope. This LabVIEW mode
is set up for detecting the real time situation about robot in motion, involved
those parameters of each wheel, the measurement result from gyroscope, etc.
Furthermore, we would find the problems and indiscoverable errors of our robot
in this way. We can test motion performance by Analyzing the uploading data
without using heavy instrument. That is really significance for maintenance and
improvement the robot. The message sending is also supported in this mode,
which means we can send Specific parameters which can be changed in real-time
to test the response of the robot. It means we can adjust the parameters when
the robot is working, to ensure which parameter is best for the robot, and check
the result in real-time.

3.4 Movement PI Control Depending On Gyroscope

In order to make the robots’ motion faster.We optimize the movenent per-
formance depending on SD-788 gyroscope(Figure 8).

Fig. 8. SD-788 Gyroscope

We collect the uploaded data delivered by gyroscope. Then we filter the data
in corresponding verilog module. The filtered data is used by the movement PI
control module. This module will read the rate on Z axis and turn itself into

the fit arithmetic-branch which is designed for different rate stages. To take the
gyroscope’s temperature drift into consideration, we revise the temperature co-
efficient using LabView and put the coefficient into the measure-decode function.

4 AI System

4.1 Strategy Hierarchical Architecture

The AI module for our off-board control system is shown in Fig. 9. It is the
brain of planning strategy and coordination among robots in both attack and
defense mode. The whole system is composed of world model, decision module
and control module.

Fig. 9. Software Architecture

With the bayes-based filter evaluating the game status, the decision module
selects appropriate play during the match in state of continuity well. Besides,
the decision module is rebuilt in a hierarchical style. The plays focus on coordi-
nation between teammates, while the agents emphasize on planning skills for the
assigned single task from the corresponding plays. The skills are vital for good
ones, contributing to executing tasks with high efficiency. Both play-level and
agent-level are configured with Config-files, and will be detailed in next section.
The control module is composed of path planning and trajectory generation. It
takes RRT algorithm to find a feasible path and Bangbang-based algorithm to
solve two-boundary trajectory planning. The world model provides all the in-
formation in the match while the decision module will feedback to the predictor

in world model. Thus, the close loop system adjusts all agents behavior accord-
ing to the change of the environment in real time. More details are shown in
ZjuNlict2012TDP [2].

Game State Evaluation A right evaluation of game status plays an important
role in the match. For the complexity of game situation, it’s really a troublesome
work. We consider a comprehensive view of the observation information, the
strength of the rivals as well as the strategy we take to realize the evaluation. Our
new method is based on the Bayes Theory [6], which gives a creative combination
of the observation information and the historical strategy feedback.

Algorithm Bayes filter p(xk,uk,zk)
for all xk do

p(xk) =
∑

xk
p
(
xk|uk, xk−1

)
p
(
xk−1

)
p(xk) = ηp

(
zk|xk,

)
p
(
xk
)

end for

Fig. 10. General Algorithm for Bayes-filter

Fig. 10 depicts the basic Bayes Filter Algorithm in pseudo code form.
our current method owns two main features:

– More stable: The evaluator gives more appropriate analysis of game s-
tate, even though there come momentary errors in observation information,
and helps to reduce the perturbation of the strategy while strengthens the
continuity of the strategy.

– Well targeted: Variable initial values of prior probabilities p(xk|uk, xk−1)
in the algorithm accustomed to different characteristic teams, making it
more convenient to configure the attacking and defending strategy in a more
flexible way.

Finite State Machine This year, we mainly focus on script configuration
to control robot behavior by a unified FSM-based mechanism, as is seen in Fig.
11(a). Every state node will link with the world model by using a condition parser
contained in the connected switch node. The switch conditions are written in
the external scripts and could be queried through internal world model.

Play Our AI module is implemented using a play-based approach. Each play
represents a fixed team plan, in which each team group has a collaborating
mission to perform and that group may have variable agents to execute. We can
also consider the play a coach in the soccer game. The plays can transfer to
each other, and the group for each agent can change too. As mentioned above,

(a) Finite State Machine (b) Interact with World Model

Fig. 11. FSM-based Mechanism

plays are designed and implemented with the unified FSM module. Plays are
composed of many parts, such as applicable condition, evaluating score, roles,
finite state machine and role tasks similar to CMU’s STP [3]. These parts can
all be configured by external scripts.

Agent Agent is performed as robot behavior which is assigned by play to control
robot to perform a specific action such as manipulating ball to zone, passing the
ball to a teammate, scrambling ball from opponent, getting ball. The agent first
select a best proper team member according to the assigned zone and task which
receive form play, then selects a proper skill for the team member performing the
assigned behavior in every execution cycle and finally generates the best target
for robot action. For example, in the shooting task it will be the best shoot point
on opponent goal line.

Skill Skill is a set of basic knowledge for every agent, such as how to move to
a point, how to get the ball and kick. Some skill generates a next target point
of the specific path which will be passed to the navigation module for finally
generating a avoiding collision path. Some skill will direct generate the speed
trajectory for some special behavior such as pulling the ball from a opponent
front. Each of skills has different main idea of generating path for robot, intercept
the ball skill is different from move to point skill in many ways. We can test each
skill independently for the best performance for each of skills.

4.2 New Strategy Frame with Lua

In last year, we wrote many scripts with our script system, which is actually
a convenient system configured with many so-called ”scripts”. However, these
scripts can not be compiled. If the strategy coder make some mistakes in the
script, it will be a difficult work to debug.

In order to overcome this shortcoming, we develop a more flexible and robust
strategy frame with Lua. By this way, we make the ”script” to be a real script.
We have moved some simple and repeated work to Lua, and left the complicated
algorithms such as path planning, vision handling in C++. So the code is divided

to two parts just like Fig. 12.Although we change our configuration file to real
Lua script, our whole strategy is also build on FSM.

Fig. 12. New Strategy Frame with Lua

Tolua++ In Fig. 12, tolua++ is an extended version of tolua, which is a tool to
integrate C/C++ code with Lua. In Lua part, we should know some variables,
functions and methods which is write in C++, and tolua++ help us deal with
the work efficiently by using a package file, which is a C++ cleaned header file.
For more details about tolua++, refer to its Reference Manual[7].

A Simple Play Script Fig. 13 is a simple play script using Lua. This script
has just one state, in this state, the role Leader will execute the STOP skill, and
the role Assister will goto the best shoot pos which is calculate using Leader’s
pos. The ”match” item means that we should choose L(short for ”Leader”) first,
then A(short for ”Assister”). The ”timeout” item means that the play will at
most execute 99999 frames.

A Lua script make configure and debug more efficiently, and another by-
product is that we can modifying the Lua code when running C++ project, and
we could see the result without restart our program.

5 Conclusion

Owing to our all team member hard work, we can obtain this result. If the
above information is useful to some new participating teams, or can contribute
to the small size league community, we will be very honor. We are also looking
forward to share experiences with other great teams around the world.

Fig. 13. A Simple Play Script

References

1. Yonghai Wu, Yue Zhao and Rong Xiong, ZJUNlict Team Description Paper for
RoboCup2013

2. Yonghai Wu, Penghui Yin, Yue Zhao and Yichao Mao, Rong Xiong, ZJUNlict Team
Description Paper for RoboCup2012

3. Brett Browning, James Bruce, Michael Bowling and Manuela Veloso, STP: Skills,
tactics and plays for multi-robot control in adversarial environments

4. Yonghai Wu, Xingzhong Qiu, Guo Yu, Jianjun Chen and Xuqing Rie: Extended
TDP of ZjuNlict 2009 Robocup 2009

5. Sheng Yu, Yonghai Wu. Motion prediction in a high-speed, dynamic environment.
6. Sebastian Thrun, Wolfram Burgard, Dieter Fox, Probabilistic Robotics, The MIT

Press
7. tolua++ Reference Manual. http://www.codenix.com/ tolua/tolua++.html.

