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Abstract. This paper details the 2014 design of UBC’s Small Size League team
robot, to be entered at RoboCup 2014 in João Pessoa, Brazil. The main focus of
this year was to greatly improve the thermal and computational performance of
our electrical hardware and to make our artificial intelligence more comprehen-
sive.

1 INTRODUCTION

UBC Thunderbots is an interdisciplinary team of undergraduate students at the Univer-
sity of British Columbia. Established in 2006, it pursued its first competitive initiative
within the Small Size League at RoboCup 2009. The team also competed in RoboCup
2010 – 2013 and is currently seeking qualification for RoboCup 2014. Over the years,
it has made significant developments of its team of autonomous soccer playing robots.
This paper will outline the progress in implementation of the current model of robots,
focusing on the mechanical, electrical and software components with particular empha-
sis on the digital logic design and the artificial intelligence (AI) plays.

2 MECHANICAL DESIGN

Table 1: Maximum Robot Dimensions

148 mm MAXIMUM HEIGHT

178 mm MAXIMUM DIAMETER

18.1% MAXIMUM BALL COVERAGE

The maximum dimensions for this year’s robot can be found above in Table 1.



The mechanical design of the robot did not undergo any significant changes from the
2013 robots, in order to better facilitate software testing, as well as allow more time to
plan for major changes in the following year. The robot is driven by four custom omni-
directional wheels, driven by 30W brushless DC motors. The linear kicking action is
achieved using a cylindrical solenoid with a mild steel plunger and attached kicking
head. Similarly, the chip-kick action is achieved using a flat solenoid, with a mild steel
plunger that actuates a levering plate. The dribbler, which catches and otherwise handles
the ball, consists of a rotating shaft with a silicone covering and is driven by a 30W
brushless DC motor. For more details on the mechanical function and design of the
robot, please refer to our 2013 team description paper [1].

Fig. 1: Isometric view of mechanical assembly

3 ELECTRONICS

3.1 Logic/Supervisory

Over a period of time, we have evaluated a large number of options for building CPU
cores as part of our FPGA bitstream, thus saving board space and achieving tight in-
tegration between firmware and VHDL-implemented peripherals. Unfortunately, our
results in this direction have been disappointing. Our initial target was the Navré, an im-
plementation of a classic-core AVR to which peripherals could be attached. While the



Navré is solid, the lack of a hardware multiply instruction in the classic core instruction
set limited performance. We then considered the pAVR, a pipelined implementation of
an enhanced-core AVR. Unfortunately, shortly before RoboCup 2013 it was discovered
that the pAVR contains a number of bugs causing improper instruction execution. Our
next target was the LEON3, a SPARC CPU originally designed for the European Space
Agency. This was reliable, but firmware enhancements revealed performance problems;
these were caused firstly by the limited bus bandwidth to SPI Flash memory where code
was stored for execute-in-place usage, having grown too large to fit in the FPGA’s in-
ternal memory, and secondly by the lack of a hardware floating-point unit, one being
available but too large to fit in the available FPGA logic resources.

Having found in-FPGA CPUs unsatisfactory, for RoboCup 2014 we are switch-
ing to a two-chip solution, with an STM32F4-series ARMv7-M hard processor on the
board connected to the FPGA via a high-speed SPI bus. The addition of this hard CPU
simultaneously more than doubles CPU clock speed, adds a floating-point unit, mas-
sively increases available Flash and RAM, frees up significant logic resources in the
FPGA, and provides us with two useful new communication interfaces on the board: a
USB engine, whose signalling standards are likely impossible to achieve with an FPGA
alone and which would take a lot of time to develop; and a proper (non-SPI) Secure
Digital card interface, which is impossible to develop on an FPGA due to the necessary
specifications not being published.

The addition of a microcontroller also permits the complete elimination of the ex-
ternal analogue-to-digital converter chip, since the built-in ADC is sufficient. It also
permits the elimination of the SPI Flash memory, as the FPGA’s configuration bitstream
can instead be stored on the Secure Digital card, already present for data logging pur-
poses, and delivered to the FPGA at powerup.

Division of logic between the two devices means that sensors and actuators must
be allocated appropriately to the specific device that can best drive them. We elected
to control our charger, kicker, and chipper from the microcontroller because they are
the most safety critical components of the robot (due to the potential for overcharg-
ing) and doing so minimizes the number of components in the pathway from ADC to
output. All analogue signals were allocated to the microcontroller, lacking any other
choice. Accordingly, digital signals directly related to analogue signals, such as drive
levels for the optical ball-sensing devices, were also allocated to the microcontroller. As
already mentioned, USB and Secure Digital interfaces were also allocated to the micro-
controller. Hall sensor reading and motor driving remained allocated to the FPGA, as
the parallelism it offers is ideal for operating the 15 inputs and 30 outputs respectively.
Our new gyroscope and accelerometer were also attached to the FPGA, allowing them
to be placed on dedicated SPI buses rather than sharing bandwidth with other devices.
The MRF24J40 radio was also attached to the FPGA, an unorthodox choice made be-
cause its SPI protocol involves large numbers of small bus transactions which would
otherwise consume a lot of CPU time on the microcontroller; the FPGA thus acts as a
protocol offload engine. Finally, the optical encoders were attached to both the micro-
controller and the FPGA; this was done because the microcontroller provides hardware
support for quadrature encoders, but we were at the time of writing investigating noise
problems which might, conceivably, have made the peripheral unsuitable and necessi-



tated the construction of more advanced filtering circuits, which could be implemented
easily in the FPGA.

3.2 Firmware

The provision of the much more powerful STM32F4 ARMv7-M microcontroller al-
lowed us to reconsider the architecture of our firmware. In prior years, our firmware
was implemented as a main loop polling for work. This year, we decided to instead use
a real-time OS. We chose FreeRTOS, due to it being large enough to provide a reason-
able set of primitives, but not too large nor too intrusive into our desired architecture.

FreeRTOS has three targets, or “ports”, available that would work acceptably for the
STM32F4 with the GCC compiler. However, all of these ports have specific drawbacks:
the CM4F port does not use the memory protection unit, which is useful for catching
stray pointer dereferences and stack overflows; the CM3-MPU port does not handle
saving and restoring floating-point context between tasks and its memory protection is
overly strong, forcing globals to be assigned to specific tasks via ELF sections, treating
tasks more like processes than threads, and requiring undesirable effort to fully specify
allowed memory areas for each task; and finally, the CM3 port neither uses the memory
protection unit nor context-switches the floating point registers. As such, we chose to
write our own FreeRTOS port, which handles the floating point unit and also enabled
the memory protection unit only in such a way as to catch the most common errors with
minimal effort.

Because the STM32F4 is the same microcontroller we use on our radio base station,
we also ported our radio base station code to use FreeRTOS. This served as a solid test
of the FreeRTOS port and other common code before starting work on the new robot
hardware.

3.3 Sensors and Control

Previous years’ designs have seen incremental updates to the control algorithms on
board the robot. Moving away from simple PID towards acceleration based (Bang
Bang) control has yielded vast improvements in precision and speed. All methods,
however, are limited by the ability of the on board firmware to identify its location
and system state relative to the desired destination.

Current iterations of the system use wheel speed encoders as the only real-time
feedback, with updates provided by the vision system at a much slower interval. These
updates are compensated at the control computer level for vision system lag and are
therefore subject to model mismatch issues at higher speeds. Additionally, the only
real-time feedback (encoders) are subject to the particularly insidious issue of wheel
slip.

To improve upon the this situation and overcome the aforementioned deficiencies,
this iteration of electronics will include both an accelerometer and gyroscope. These
two instruments, while subject to their own shortcomings, can compensate for both
wheel slip and model mismatch of the AI status updates when travelling at high speed.
These two devices will be integrated with the wheel encoders to produce a more accu-
rate state predictions and by extension more precise control of the robot.



3.4 Motor Driver

As previously mentioned, we are taking the opportunity of redesigning the circuit to
address the heating problem caused by the integrated motor driver chip, L6234, used
in the last design. Since large on resistance proves to be a common issue in integrated
motor driving solutions, after extensive research, w e are going with discrete half bridge
drivers and MOSFET half bridges in this design iteration. We found three half bridge
drivers and three MOSFET half bridges per motor a reasonable midpoint solution to
reducing inline resistance with the motor phase and the constraint of available board
space.

We have yet to test this driving scheme in the new iteration of circuit board. The
inline resistance is expected to be reduced by a factor of 10 and this specification alone
would allow our robot to drive for a long time and to accelerate or decelerate harder
without overheating.

4 SOFTWARE

4.1 Skills Tactics Plays

The high level decision making model used is the STP model, developed by CM-
Dragons in 2003 [6]. This hierarchical model breaks the high level decision making
into three main abstractions: Skills, Tactics and Plays.

Skills are composed of low level actions for an individual robot such as movement,
kicking or dribbling the ball. Tactics take in various world invariants and calculations
and then determine when to use such actions. Plays are dynamic role assignments for
each robot to carry out tactics in cohesion based upon the current world invariants and
playtype. Choosing the correct invariants ensures that an effective play gets chosen for
the scenario on the field.

Fig. 2: 2014 STP Model



Loose Ball Play Type This year a new invariant has been added to the AI for off
ball playtype. In previous years the ball was either in possession of a friendly team
or an enemy team. This year a third invariant has been added for when neither team
has the ball in its possession. This adds a new category to our plays and allows us to
take advantage of a myriad of tactics in recovering the ball or hindering the enemy.
Dealing with a loose ball effectively is very important to the overall strategy. It presents
an opportunity to challenge the other team and press for the ball.

Play Books Play books were added to allow different plays to be selected for different
matches at runtime. This allows our team to create a custom sets of plays for each
opponent we face. Having play books allow us to easily and quickly customize a set
of tactics to focus on so that we can capitalize on any weaknesses in our opponent’s
offense or defense.

Offense Further improvements to the Triangle Offense from last year were made in
order to better facilitate the positions and roles of the two off-ball offenders. Off-ball
robots now position themselves to be able to one-touch shoot into the goal.

Defense Our tried and tested defense has largely remained the same from previous
years. Two defenders assist the goalie by blocking all possible paths for the ball to
reach the goal. This is executed by drawing two vectors from the ball to both friendly
goal posts and positioning the goalie and two defender robots to fill out the triangle.
This year due to the addition of the off-ball invariant we can allocate the other three
robots to also take on passive defensive roles. The three robots that are not defending
the goals now position themselves to block passes of enemy offenders.

4.2 Navigator

Our team employs the Rapidly Exploring Random Tree for finding navigation paths to
a destination. In past years, only the next intermediate point to the destination would
be calculated by the navigation layer each software tick. The Navigator now correctly
calculates a complete path with set timestamps to the destination, and then keeps to that
path with varied hysteresis, unless field invariants force a path change. In addition, a
new flag was added for indirect and direct kicks. This allows the navigator to use more
precise and careful navigation with respect to the ball in order to correctly line up for
kicks.

4.3 Kalman and Ball Filters

With any data received from sensors it is to be expected that there is some noise which
prevents the recipient from receiving precise and accurate results. One method to elim-
inate noise is the Kalman filter, which attempts to smooth out any noise in a system by
using measurements from a sensor, previously estimated locations, and control inputs
into the system to provide an estimate for the current state of a system. Our AI has made



use of a Kalman filter for many years with success. Recently, we have noticed that work
could be done to improve the Kalman filter. Some improvements being considered this
year are improvements to the interpretation of control inputs and adjusting how much
the calculated versus measured input are trusted. In order for the filter to accurately
predict changes to the system it is required that the filter knows of any inputs into the
system. In this case the system is the robot and the filter must know of any accelerations
applied to the robot. Ensuring that the filter has the most accurate values for the control
input will ensure that the filter is able to more accurately predict the state of the system.
A nice feature of the Kalman filter is there is some customizability with how the final
result is created. More emphasis can be placed on the calculated versus the measured
value. Fine tuning this balance will generate accurate predictions.

Our AI also has a ball filter. This filter, given a set of possible objects that are the
ball and a confidence percentage based on the shape of the object, determines which
is the ball. Improvements were made to this filter as previously problems were noticed
with ball detection. Being able to know where the ball is at all times is very critical to
success.

5 Acknowledgements

We’d like to thank the Faculty of Applied Science; the departments of Mechanical En-
gineering, Mining Engineering, Electrical Engineering, Engineering Physics, and Com-
puter Science; and the University of British Columbia for their continued support. We’d
also like to thank all our sponsors for their generous contributions to undergraduate stu-
dent learning and research.

References

1. Palmer, A., Head, C., Lai, M., Poon, H., Lin, T., Wong, A., Wang, B., Fraser, J., Yu, K.,
2013 Team Description Paper: UBC Thunderbots, 2013

2. Palmer, A., Balanko, J., Head, C., Fraser, J., Lum, S., Parizeau, M., Poon, H., Lin, T. 2012
Team Description Paper: UBC Thunderbots, 2012

3. Palmer, A., Jiwa, A., Huynh, S., Head, C., Fraser, J., Leson, A., Knoll, B., Suyadi, S. 2011
Team Description Paper: UBC Thunderbots, 2011.

4. Jiwa, A., Knoll, B., Head, C., Hu, H., Fraser, J., Serion, J., Baillie, K., Lam, LT. 2010 Team
Description Paper: UBC Thunderbots, 2010.

5. Browning, B., Bruce, J., Bowling, M., Veloso, M. STP: Skills, tactics and plays for multi-
robot control in adversarial environments, 2004.

6. Browning, B., Bruce, J., Bowling, M., Veloso, M. CMDragons03 Team Description Paper,
2003.


