Small Size Holland
Team Description Paper
RoboCup 2017

Alvaro Espinosa, Thijs Geurkink, Jelle Holtslag, Rogier Heeg,
Nico Kleinreesink, Mark Lefering, Thomas Hakkers, Jeroen de Jong,
Ryan Meulenkamp, Seif Megahed, Joost Overeem, Maarten Overeem,

Rimon Oz, and Joep Tool

Life Science, Engineering, and Design, Saxion University of Applied Sciences,
M.H. Tromplaan 28, 7513 AB Enschede, The Netherlands
robocup.saxion@gmail.com
http://www.SmallSizeHolland.com/

Abstract. This paper outlines the major design decisions, implemen-
tation, and test results by Team Small Size Holland since participat-
ing in Robocup 2016 in Leipzig, Germany. The technical issues which
resulted in malfunctioning robots have been analyzed and solved in
a redesign of the robot’s motherboard and a change in motor align-
ment. Progress was made on a custom OS for the embedded system
and the strategy software data processing engine has been replaced with
reactive — streams — commons.

Keywords: Robotics, Easy Disassembly, Omni Wheels, Dribbler, CPU,
Modular, Reactive, Streams

1 Introduction

Small Size Holland (Team SSH) from Saxion University, the Netherlands, is a
Small Size League soccer team consisting of students who participate in the
RoboCup for a single semester during their minor or specialisation as part of
their bachelor studies. This research builds on the research of previous years. This
paper outlines the changes made to the designs and implementations described
in the team’s previously published papers ([1] and [2]).

At the tournament in Hefei SSH played with the first generation of game-
ready robots (G2). The team made the decision to create a new mechanical
and electrical design for the robots based on the knowledge and experience
gained while working with G2. Between September 2015 and July 2016 two
teams worked on designing, prototyping, testing, and producing SSH’s third
generation of robots (G3). Due to both organisational and technical issues the
G3 robots were not suitable (nor safe) to be used during games and despite the
effort of the team the robots were not ready at the beginning of RoboCup 2016.

2 Small Size Holland, Saxion

The new team, which started in September of 2016, has been working on a re-
design and reimplementation of the mechanical and electrical systems; reverting
to (improved) subsystems from G2 where necessary. The only remaining step to
take is system integration tests before G4 is game-ready.

This paper discusses the major changes in hardware and the software which
resulted in SSH’s fourth generation of robots (G4). Chapter two discusses the
mechanical layout of the robot. The third chapter describes the new (modular)
motherboard. Chapter four describes LegOS: SSH’s custom OS for the embed-
ded system. Chapter five describes zosma: the next iteration of SSH’s strategy
software.

2 Mechanical Design

Fig. 1: Exploded view of the G4 robot

The addition of a fourth motor to G3 reduced the amount of space inside
of the robot which is used for the chipping- and kicking-solenoids, the solenoid
capacitors, and the dribbler. Because of this the decision was made to wind
custom flat solenoids for G3 and to suspend the motors above the wheels. System
tests indicated that these solenoids performed worse (ie. kicking and chipping
velocity) than the solenoids in G2. Furthermore, the configuration of the four

Small Size Holland Team Description Paper RoboCup 2017 3

wheels (ie. the angle and radial distance) proved incompatible with the wheels
used resulting in a significant loss of energy to friction.

To solve these issues the decision was made to redesign the interior of the
robot. First, the decision was made to make the system compatible with the G2
solenoid subsystem until a provably better subsystem has been built. Second,
the decision was made to improve on the design of the G2 chipper-and-kicker in
such a way that it remained compatible with the G2 solenoid subsystem. Third,
the decision was made to redesign the wheel-and-motor subsystem to address
the issue of space in the interior of the robot. The team currently has eight
mechanically working prototypes weighing an average of 2.8kg.

2.1 Chipper and Kicker

(a) G4 chipper design (b) G4 kicker design

Fig.2: G4 chipper-and-kicker design

The chipper and kicker for G4 were redesigned to ensure compatibility with
the G2 solenoid subsystem. This meant changing from a chipper with a push-
action to a chipper with a pull-action as in G2. The chipper plate is attached
to the lever by sliding it into position and securing it with a simple spot weld.
The design was also modified to account for the reduction in space due to the
addition of the fourth motor. The new kicker is attached to a linear guide in order
to reduce the displacement of the kicker perpendicular to the force being applied
to the ball; this ensures that the total force applied to the ball is maximized.

4 Small Size Holland, Saxion

2.2 Wheels and Motors

Fig. 3: G4 wheel-and-motor assembly

The addition of the fourth motor resulted in reduced space in the interior of
the robot. The wheel-and-motor assembly of G4 differs to the assembly in G3
in that the wheel-and-motor holder was replaced with a 3D-printed and flatter
equivalent. This resulted in enough space being freed up to align the motors
properly and fit in the solenoid and chipper-and-kicker subsystems.

3 Electrical Design

Fig.4: G4 assembled motherboard

Small Size Holland Team Description Paper RoboCup 2017 5

The G3 motherboard was designed with modularity in mind. This meant that
the CPU-unit, WiFi-unit, and motor driver IC’s were replaceable. Tests with the
G3 motherboard indicated that the controlling circuit (based on the Reference
Schematic in [3], p. 26), which is a speed control, contained noise which increased
with continued usage of a motor driver IC. The cause of this noise was a defect
in the separation between power and signal grounds which resulted in spikes on
the signal lines which in turn burned the motor drivers.

To solve these issues the decision was made to design a G4 motherboard
with a tested signal and ground separation and in which entire motor drivers
(ie. including the controlling circuit) could be replaced. Since the G3 charge-
board functioned properly there were no changes made to this subsystem. The
team currently has two working motherboards including motor controller and
CPU/WiFi units and is expected to complete eight sets more by the end of
March 2017.

3.1 Motherboard

The G4 motherboard is a six-layer design which makes use of Molex SpeedStack
connectors to allow up to seven modules (excluding the CPU/WiFi unit) to be
attached. Each of these modules are on a common bus for 12C, SPI, and USB.
The motherboard features an USB hub which joins all the modules so that they
can be programmed with ease. The connectors provide additional GPIO pins so
that the CPU/WiFi unit can override the behavior of the processing units on
the modules in case of technical failure. Furthermore, the motherboard contains
three power supplies (3.3V, 5V, and 16V).

3.2 Modules

All of the modules have temperature and current sensors to determine the per-
formance of these modules under load. Currently SSH has developed motor con-
troller, sensor, and dribbler modules for the robot. All these modules feature an
Atmel SAML21G18 microprocessor clocked at 48MHz. Currently work is being
done on creating a chipper-and-kicker module which may potentially replace the
G3 chargeboard before RoboCup 2017.

Communication The communication buses on the motherboard were designed
using microstrip and stripline calculations. Because of this the buses all have
controlled impedance and function properly at high frequencies. The commu-
nication bus has been completely isolated from the power planes which feed
the inductive load (ie. the motors) so that no interference occurs. The six layer
design of the motherboard allows for smooth ground return paths with a negli-
gible loop area. The communication bus itself consists of SPI, 12C, and USB so
that each module can make use of the most appropriate protocol. The modules
which are currently on the motherboard make use of SPI exclusively, but future
plans include USB-support for these modules so that they can be accessed as
USB-devices.

6 Small Size Holland, Saxion

Fig.5: G4 motherboard layout

3.3 Motor Controllers

The G4 motor controller is a dual-module four layer board which consists of one
power, one ground, and two signal layers. The signal layers are the outer layers
to ensure an equivalent impedance reference from both power planes. The motor
drivers used in these controllers are the same drivers which were used in G2
and the speed control has been replaced with a direct control by the embedded
system (via DAC).

4 LegOS

LegOS is the custom real-time OS which runs on the modules SSH has cur-
rently developed for the G4 motherboard, and in specific the SAML21G18. The
base of the OS contains a model for generic drivers and applications. Further-
more, several drivers have been written for peripherals, such as SERCOM (serial
communication such as SPI and 12C), USB, ADC and DAC, and PWM.

Small Size Holland Team Description Paper RoboCup 2017 7

Fig. 6: G4 motor controllers

The communications module on the motherboard makes use of an ESP12 for
communicating with the server running the strategy software. SSH has worked
on a port of LegOS for the ESP12 which contains drivers for 802.11b/g, UDP
and TCP, and transcoding protobuf.

4.1 Applications

One of LegOS’ major design decisions was to abandon a threading model in favor
of an event-system based on callbacks. This means that applications written for
LegOS consist of a single-threaded application which chains functionality using
callbacks. Applications built for LegOS are purposely kept small and consist of
mapping data received from one of the communication buses to a format which
is understood by peripherals, such as the motor driver IC, and subsequently
transmitting that data to the peripheral. Applications which have been built
for LegOS so far include Django, the chipper-and-kicker application, Sonic,
the motor controller application, and Aewop, the WiFi application. Progress is
being made on a separate application for dribbler functionality.

8 Small Size Holland, Saxion

| IManageable || IUpdateable |

1 f
[

| Spplication |

f

‘Djangn.ﬂ«pplicatinn| | hainspplication | | Fainspplication | | SonicApplication ‘

Fig.7: LegOS class diagram for applications

4.2 zosma

Since RoboCup 2016 work has been progressing on SSH’s strategy software.
The decision was made to extend zosma in such a way that it could be reused
as a generic strategy system for playing games. The software has been split
up into several modules to achieve this goal. zosma — game is the module
which is responsible for modelling games. zosma — ssl is an implementation
of zosma — game for Small Size League Soccer. zosma makes extensive use of
reactive — streams — commons[4] to allow for high data throughput. In com-
parison to the previous iteration of the software, which was developed using
the functional reactive paradigm, zosma is a purely reactive design. Further-
more, zosma contains a module named zosma — math which, in contrast with
apache — commons — math, is built using nd4;[5] to allow for GPU accelerated
computations.

4.3 zosma-game

Fig. 8: zosma — game class diagram

Small Size Holland Team Description Paper RoboCup 2017 9

zosma — game consists of several interfaces to make programming games
easier. In the context of the Small Size League the implementations of Agent,
Command, and Game correspond to immutable state representations of the
robot, a command which is used to control it, and the game itself (including
detection and referee data). A Strategizer is a Scanner, ie. a bifunction which
behaves as a reducer. For every incoming piece of data to a Strategizer the
bifunction will take as its argument the previously returned value and the in-
coming data object. As a result of this all data objects in zosma are immutable.
The Arbiter is a functional interface which takes as its argument a set of objects
and returns a single object of the same type. The Arbiter is used to arbitrate
between competing strategies.

Rules A Game is defined to be a functional interface which returns a set of
game rules. As a result of this it is possible for the system to detect when rules
are being violated and allows Strategizers to act on rules. Currently work is
being done to integrate the autoref with this system and this is expected to be
completed before RoboCup 2017.

Engines Engines, within the context of zosma, are Arbiters which contain
a set of Strategizers. Engines are used to group Strategizers which perform
similar tasks such that a more optimal strategy can be calculated. The arbitra-
tion functionality is then used to determine which strategy (produced by which
Strategizer) is the best solution. The implementation of the Arbiter is pur-
posely left open, and so programmers may decide whether they use discrete,
probabilistic, or custom methods to determine the relative quality of computed
strategies and decide on a final strategy before it is broadcast to the robot.

4.4 zosma-ssl

zosma — ssl is an implementation of zosma — game specifically for Small Size
League soccer. This module contains implementations of the (extended) Kalman
filter(s) and particle swarm filters for state estimation. Furthermore, zosma —
game contains several engines dealing with state estimation, computing strate-
gies, and detecting hotspots on the field (ie. spots where the measurement co-
variance is significant).

A Soccer Al is a program which can play a Small Size League soccer game
and implements a Soccer Engine. A Soccer Engine is an engine which maps
Strategizers to Agents controlled by those Strategizers. Furthermore, a Soccer Engine
has the functionality of SoccerOperations which is a group over the Euclidian
plane (the domain of the state space) allowing the Soccer Engine to compute
distances and other metrics.

4.5 zosma-torch

While the previous iteration of the software had a 3D-field it is impractical (and
unnecessary) to do 3D-computations on the same system which is calculating

10 Small Size Holland, Saxion

Fig.9: zosma — ssl class diagram

strategies. Because of this the team decided to create a command-line interface
to zosma which can be used to configure the application and display system
feedback. zosma — torch, the module which accomplishes this, is built using
lanternal6].

Small Size Holland Team Description Paper RoboCup 2017 11

Fig. 10: zosma — torch splash screen

References

. Emmerink, T., Berg, R. van den, Overeem, J.W., Hakkers, T., Jong, J. de, Van
Ommeren, J., Meulenkamp, R.:SSH Team Description Paper for RoboCup 2015.

Enschede (2015)

. Overeem, J., Oz, R., Schrijver, N., Jong, J. de, Hakkers, T., Meulenkamp, R., Mei-
jerink, J., van Deth, N., Teterissa, M., Dickers, S., Elmas, E., Lefering, M., and Berg,
R. van den :SSH Team Description Paper for RoboCup 2016. Enschede (2016)

. L6235 - DMOS driver for 3-phase brushless DC motor. STMicroelectronics NV.

(2014)

. reactive — streams — commons, reactor. Retrieved February 20, 2017, from

https://github.com/reactor/reactive-streams-commons

. nddj, deeplearning4j. Retrieved February
https://github.com/deeplearning4j/nd4j
. lanterna, mabe02. Retrieved February

https://github.com/mabe02/lanterna

20, 2017, from

20, 2017, from

