
SRC 2018 Team Description Paper

Ren Wei*, Wenhui Ma, Zongjie Yu, Wei Huang, Shenghao Shan

Fubot Shanghai Robotics Technology Co. LTD,

Shanghai, People’s Republic of China

ninjawei@fubot.cn

Abstract. In this paper, we present our robot’s hardware overview, software

framework and free-kick strategy. The free-kick tactic plays a key role during the

competition. This strategy is based on reinforcement learning and we design a

hierarchical structure with MAXQ decomposition, aiming to train the central

server to select a best strategy from the predefined routines. Moreover, we ad-

just the strategy intentionally before the final. Our team won the first place in the

SSL and we hope our effort can contribute to the RoboCup artificial intelligent

progress.

Keywords: RoboCup, SSL, MAXQ, free-kick, reinforcement learning.

1 Introduction

As a famous international robot event, RoboCup appeals to numerous robot enthusiasts

and researchers around the world.

We introduce the hardware overview and software framework in this paper. The

software framework has a plugin system which brings extensibility. For the high level

strategy, our energy is focused on the free-kick because we want to find a more intelli-

gent and controllable one. Controllable means that we hope our team can switch strat-

egy in case that the opponent change their strategy in next game. The intelligent and

the controllable are not contradictory. Many research also indicate the importance of

free-kick [1][3].

In recent years, many applications about reinforcement learning have sprung up, for

instance, the AI used in the StarCraft and DotA. These applications require the cooper-

ation between agents and the RoboCup is a perfect testbed for the research of reinforce-

ment learning for its simplified multi-agents environment and explicit goal. In this con-

text comes our free-kick strategy.

The remainder of this paper is organized as follows. Section 2 describes the overview

of the robot’s hardware. Section 3 presents the details of robotics framework we used.

Section 4 introduces the markov decision process (MDP) and the MAXQ method in the

4.1, then illustrates the application in our free-kick strategy. The Section 5 shows the

result. Finally, Section 6 concludes the paper and points out some future work.

2

2 Hardware

In this part, we describe the overview of the robot mechanic design. The controller

board is shown in Figure 1 and the mechanical structure is in Figure 2.

Fig. 1. Controller board overview

Our CPU is STM32F407VET6. The main components are:

(1) Colored LED interface

(2) Motor Controller interface

(3) Encoder interface

(4) Infrared interface

(5) Motor interface

(6) Speaker interface

(7) LED screen interface

(8) Mode setting switcher

(9) Bluetooth indicator

(10) Debug interface

(11) Joystick indicator

(12) Booster switcher

3

Fig. 2. Mechanical structure

(1) LED screen

(2) Charge status indicator

(3) Kicker mechanism

(4) Bluetooth Speaker

(5) Battery

(6) Universal wheel

(7) Power button

(8) Energy-storage capacitor

3 Software Framework

RoboKit is a robotics framework developed by us, as shown in Figure 3. It contains

plugin system, communication mechanism, event system, service system, parameter

server, network protocol, logging system and Lua Script bindings etc. We develop it

with C++ and Lua, so it is a cross platform framework (working on windows, Linux,

MacOS etc.). For SSL, we developed some plugins based on this framework, such as

vision-plugin, skill-plugin, strategy-plugin etc. Vision-plugin contains multi-camera

fusion, speed filter and trajectory prediction. Skill-plugin contains all of the basic action

such as kick, intercept, chase, chip etc. And strategy-plugin contains defense and attack

system.

4

Fig. 3. RoboKit structure

4 Reinforcement Learning

Reinforcement learning has become an important method in RoboCup. Stone, Ve-

loso[4][5][13], Aijun[2], Riedmiller[14] et al. have done a lot of work on the online

learning , SMDP Sarsa(λ) and MAXQ-OP for robots planning.

Free-kick plays a significant role in the offense, while the opponents’ formation of

defense are relatively not so changeable. Our free-kick strategy is inspired from that a

free-kick can also be treated as a MDP and the robot can learn to select the best free-

kick tactics from a certain number of pre-defined scripts. For the learning process, we

also implement the MAXQ method to handle the large state space.

In this chapter we will first briefly introduce the MDP and MAXQ, further details

can be found here[10]. Then, we will show how to implement this method in our free-

kick strategy, involving the MDP modeling and the sub-task structure construction.

4.1 MAXQ decomposition

The MAXQ technique decomposes a markov decision process M into several sub-pro-

cesses hierarchically, denoted by {𝑀𝑖 , 𝑖 = 0, 1, … , 𝑛}. Each sub-process 𝑀𝑖 is also a

MDP and defined as ⟨𝑆𝑖 , 𝑇𝑖 , 𝐴𝑖 , 𝑅𝑖⟩, where 𝑆𝑖 and 𝑇𝑖 are the active state and termination

set of 𝑀𝑖 respectively. When the active state transit to a state among 𝑇𝑖 , the 𝑀𝑖 is

solved. 𝐴𝑖 is a set of actions which can be performed by M or the subtask 𝑀𝑖. 𝑅𝑖(𝑠’|𝑠, 𝑎)

5

is the pseudo-reward function for transitions from active states to termination sets, in-

dicating the upper sub-task’s preference for action a during the transition from the state

𝑠′ to the state 𝑠. If the termination state is not the expected one, a negative reward would

be given to avoid 𝑀𝑖 generating this termination state[10]

 𝑄𝑖
∗(𝑠, 𝑎) = 𝑉∗(𝑎, 𝑠) + 𝐶𝑖

∗(𝑠, 𝑎) (1)

Where 𝑄𝑖
∗(𝑠, 𝑎) is the expected value by firstly performing action 𝑀𝑖 at state 𝑠, and

then following policy 𝝅 until the 𝑀𝑖 terminates. 𝑉𝜋(𝑎, 𝑠) is a projected value function

of hierarchical policy 𝝅 for sub-task in state 𝑠, defined as the expected value after exe-

cuting policy 𝝅 at state 𝑠, until 𝑀𝑖 terminates.

 𝑉∗(𝑖, 𝑠) = {
𝑅(𝑠, 𝑖) 𝑖𝑓 𝑀𝑖 𝑖𝑠 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒

𝑚𝑎𝑥𝑎∈𝐴𝑖
𝑄𝑖

∗(𝑠, 𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2)

𝐶𝑖
∗(𝑠, 𝑎) is the completion function for policy 𝝅 that estimates the cumulative re-

ward after executing the action 𝑀𝑎, defined as:

 𝐶𝑖
∗(𝑠, 𝑎) = ∑ 𝛾𝑁𝑃(𝑠′, 𝑁|𝑠, 𝑎)𝑉∗(𝑖, 𝑠′)𝑠′,𝑁 (3)

The online planning solution is explained in[2], and here we list the main algorithms.

Algorithm 1. OnlinePlanning ()

Input: an MDP model with its MAXQ hierarchical structure

Output: the accumulated reward 𝑟 after reaching a goal

𝑟 ← 0
𝑠 ← 𝐺𝑒𝑡𝐼𝑛𝑖𝑡𝑆𝑡𝑎𝑡𝑒()
𝑟 ← 𝑟 + 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐴𝑐𝑡𝑖𝑜𝑛(𝑎0, 𝑠)
while 𝑠 ∉ 𝐺0

do

 〈𝑣, 𝑎𝑝〉 ← 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑆𝑡𝑎𝑡𝑒(0, 𝑠, [0,0,··· ,0])

 𝑟 ← 𝑟 + 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝐴𝑐𝑡𝑖𝑜𝑛(𝑎𝑝, 𝑠)

 𝐺𝑒𝑡𝑁𝑒𝑥𝑡𝑆𝑡𝑎𝑡𝑒()
return 𝑟

Here we set an initial action update before the system start updating. The initial ac-

tion enable us to modify the strategy according to the opponent’s defense formation.

Algorithm 2. EvaluateState(i,s,d)

Input: subtask 𝑀𝑖, state 𝑠 and depth array 𝑑
Output: 〈𝑉∗(𝑖, 𝑠), 𝑎𝑝

∗〉

if 𝑀𝑖 is primitive then return 〈𝑅(𝑠, 𝑀𝑖), 𝑀𝑖〉
else if 𝑠 ∉ 𝑆𝑖 𝑎𝑛𝑑 𝑠 ∉ 𝐺𝑖 then return 〈−∞, 𝑛𝑖𝑙〉
else if 𝑠 ∈ 𝐺𝑖 then return 〈0, 𝑛𝑖𝑙〉
else if 𝑑[𝑖] ≥ 𝐷[𝑖] then return 〈𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑉𝑎𝑙𝑢𝑒(𝑖, 𝑠), 𝑛𝑖𝑙〉
else

 〈𝑣∗, 𝑎𝑝
∗〉 ← 〈−∞, 𝑛𝑖𝑙〉

6

 for 𝑀𝑘 ∈ Subtasks(𝑀𝑖) do
if 𝑀𝑘 is primitive or 𝑠 ∉ 𝐺𝑘 then

 〈𝑣, 𝑎𝑝〉 ← EvaluateState(𝑘, 𝑠, 𝑑)

 𝑣 ← 𝑣 + EvaluateCompletion(𝑖, 𝑠, 𝑘, 𝑑)
 if 𝑣 > 𝑣∗

 〈𝑣∗, 𝑎𝑝
∗〉 ← 〈𝑣, 𝑎𝑝〉

 end

return 〈𝑣∗, 𝑎𝑝
∗〉

Algorithm 2 summarizes the major procedures of evaluating a subtask. The proce-

dure uses an AND-OR tree and a depth-first search method. The recursion will end

when:

(1) the subtask is a primitive action;

(2) the state is a goal state or a state outside the scope of this subtask;

(3) a certain depth is reached.

Algorithm 3. EvaluateCompletion (i,s,a,d)

Input: subtask Mi, state s, action Ma and depth array d

Output: estimated C∗(i, s, d)

G̃a ← ImportanceSampling(Ga, Da)

v ← 0
for s′ ∈ G̃a do

 d′ ← d;

 d′[i] ← d′[i] + 1

 v ← v +
1

G̃a
 EvaluateState(i, s′, d′)

end

return v

Algorithm 3 shows a recursive procedure to estimate the completion function, where

G̃a is a set of sampled states drawn from prior distribution 𝐷𝑎 using importance sam-

pling techniques.

4.2 Application in free-kick

Now we utilize the techniques we mentioned in our free-kick strategy. First we should

model the free-kick as a MDP, specifying the state, action, transition and reward func-

tions.

State space: As usual, the teammates and opponents are treated as the observations of

environment. The state vector’s length is fixed, containing 5 teammates, 6 opponents,

a ball and the agent self.

Action space: For the free-kick, the actions includes kick, turn and dash. They are in

the continuous action space.

Transition: We predefined 60 scripts which tell agent the behavior of team-mates.

These scripts are chosen randomly. For the opponents, we simply assume them moving

7

or kicking (if kickable) randomly. The basic atomic actions is modeled from the robot

kinematic analysis.

Reward function: The reward function considers not only the ball scored, which may

cause the forward search process terminates without rewards for a long period. Consid-

ering a free-kick, a satisfying serve should never be intercepted by the opponents, so if

the ball pass through the opponents, we give a positive reward. Similarly, we design

several rewards function for different sub-tasks.

Next, we implement MAXQ to decompose the state space. Our free-kick MAXQ

hierarchy is constructed as follows:

Primitive actions: We define three low-level primitive actions for the free-kick process:

the kick, turn and dash. Each primitive action has a reward of -1 so that the policy reach

the goal fast.

Subtasks: The kickTo aims to kick the ball to a direction with a proper velocity, while

the moveTo is designed to move the robot to some locations. To a higher level, there

are Lob, Pass, Dribble, Shoot, Position and Formation behaviors where:

(1) Lob is to kick the ball in the air to lands behind the opponents;

(2) Pass is to give the ball to a teammate.

(3) Dribble is to carry the ball for some distance.

(4) Shoot is to kick the ball to score.

(5) Position is to maintain the formation in the free-kick.

Free-kick: The root of the process will evaluate which sub-task should the place kicker

should take.

Our hierarchy structure is shown in Figure 4. Note that some sub-tasks need param-

eters and they are represented by a parenthesis.

Fig. 4. Hierarchical structure of free-kick

8

5 Conclusion

This paper presents our robot’s hardware and software framework. We implement the

reinforcement learning in our free-kick tactic. Based on the related work, we divide the

free-kick into some sub-tasks and write some hand-made routines for the learning pro-

cess. Our contribution lies in the realization of reinforcement learning in the SSL, which

is a first step from simulation to reality.

References

1. Mendoza, J. P., Simmons, R. G., & Veloso, M. M. (2016, June). Online Learning of Robot

Soccer Free Kick Plans Using a Bandit Approach. In ICAPS (pp. 504-508).

2. Bai A., Wu F., Chen X.: Towards a Principled Solution to Simulated Robot Soccer. In: Chen

X., Stone P., Sucar L.E., van der Zant T. (eds) RoboCup 2012. Lecture Notes in Computer

Science, vol. 7500, pp. 141-153. Springer, Heidelberg (2013).

3. Cooksey, P., Klee, S., & Veloso, M. (2016). CMDragons 2015: Coordinated Offense and

Defense of the SSL Champions. RoboCup 2015: Robot World Cup XIX, 9513, 106.

4. Cooksey, P., Klee, S., & Veloso, M. (2016). CMDragons 2015: Coordinated Offense and

Defense of the SSL Champions. RoboCup 2015: Robot World Cup XIX, 9513, 106.

5. Stone, P., Sutton, R., Kuhlmann, G.: Reinforcement learning for robocup soccer keepaway.

Adaptive Behavior 13(3), 165–188 (2005).

6. Kalyanakrishnan, S., Liu, Y., Stone, P.: Half field offense in roboCup soccer: A multiagent

reinforcement learning case study. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi,

T. (eds.) RoboCup 2006. LNCS (LNAI), vol. 4434, pp. 72–85. Springer, Heidelberg (2007).

7. Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics, vol. 1. MIT press, Cambridge (2005).

8. Bruce, J., & Veloso, M. (2002). Real-time randomized path planning for robot navigation.

In Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on (Vol. 3, pp.

2383-2388). IEEE.

9. Yangsheng Ye, Yue Zhao, Qun Wang, Xiaohe Dai, Yuan Feng and Xiaoxing Chen: SRC

Team Description Paper for RoboCup 2017 (2017).

10. Dietterich, T.G.: Hierarchical reinforcement learning with the MAXQ value function de-

composition. Journal of Machine Learning Research 13(1), 63 (May 1999).

11. Ren, C., Ma, S.: Dynamic modeling and analysis of an omnidirectional mobile robot. In:

Intelligent Robots and Systems (IROS), pp. 4860–4865 (2013).

12. Kober, J., Mülling, K., Krömer, O., Lampert, C.H., Schölkopf, B., Peters, J.: Movement

templates for learning of hitting and batting. In: IEEE International Conference on Robotics

and Automation 2010, pp. 1–6 (2010).

13. Stone, P.: Layered learning in multi-agent systems: A winning approach to robotic soccer.

The MIT press (2000).

14. Gabel, T., Riedmiller, M.: On progress in roboCup: The simulation league showcase. In:

Ruiz-del-Solar, J. (ed.) RoboCup 2010. LNCS (LNAI), vol. 6556, pp. 36–47. Springer, Hei-

delberg (2011).

