
SRC 2018 Team Description Paper 

Ren Wei*, Wenhui Ma, Zongjie Yu, Wei Huang, Shenghao Shan 

Fubot Shanghai Robotics Technology Co. LTD,  

Shanghai, People’s Republic of China 

ninjawei@fubot.cn 

Abstract. In this paper, we present our robot’s hardware overview, software 

framework and free-kick strategy. The free-kick tactic plays a key role during the 

competition. This strategy is based on reinforcement learning and we design a 

hierarchical structure with MAXQ decomposition, aiming to train the central 

server to select a best strategy from the predefined routines. Moreover, we ad-

just the strategy intentionally before the final. Our team won the first place in the 

SSL and we hope our effort can contribute to the RoboCup artificial intelligent 

progress. 
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1 Introduction 

As a famous international robot event, RoboCup appeals to numerous robot enthusiasts 

and researchers around the world.  

We introduce the hardware overview and software framework in this paper. The 

software framework has a plugin system which brings extensibility. For the high level 

strategy, our energy is focused on the free-kick because we want to find a more intelli-

gent and controllable one. Controllable means that we hope our team can switch strat-

egy in case that the opponent change their strategy in next game. The intelligent and 

the controllable are not contradictory. Many research also indicate the importance of 

free-kick [1][3]. 

In recent years, many applications about reinforcement learning have sprung up, for 

instance, the AI used in the StarCraft and DotA. These applications require the cooper-

ation between agents and the RoboCup is a perfect testbed for the research of reinforce-

ment learning for its simplified multi-agents environment and explicit goal. In this con-

text comes our free-kick strategy. 

The remainder of this paper is organized as follows. Section 2 describes the overview 

of the robot’s hardware. Section 3 presents the details of robotics framework we used. 

Section 4 introduces the markov decision process (MDP) and the MAXQ method in the 

4.1, then illustrates the application in our free-kick strategy. The Section 5 shows the 

result. Finally, Section 6 concludes the paper and points out some future work. 
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2 Hardware 

In this part, we describe the overview of the robot mechanic design. The controller 

board is shown in Figure 1 and the mechanical structure is in Figure 2. 

 

Fig. 1. Controller board overview 

Our CPU is STM32F407VET6. The main components are: 

(1) Colored LED interface  

(2) Motor Controller interface  

(3) Encoder interface  

(4) Infrared interface  

(5) Motor interface  

(6) Speaker interface  

(7) LED screen interface  

(8) Mode setting switcher  

(9) Bluetooth indicator  

(10) Debug interface  

(11) Joystick indicator  

(12) Booster switcher 
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Fig. 2. Mechanical structure 

(1) LED screen  

(2) Charge status indicator  

(3) Kicker mechanism  

(4) Bluetooth Speaker  

(5) Battery  

(6) Universal wheel  

(7) Power button  

(8) Energy-storage capacitor 

3 Software Framework 

RoboKit is a robotics framework developed by us, as shown in Figure 3. It contains 

plugin system, communication mechanism, event system, service system, parameter 

server, network protocol, logging system and Lua Script bindings etc. We develop it 

with C++ and Lua, so it is a cross platform framework (working on windows, Linux, 

MacOS etc.). For SSL, we developed some plugins based on this framework, such as 

vision-plugin, skill-plugin, strategy-plugin etc. Vision-plugin contains multi-camera 

fusion, speed filter and trajectory prediction. Skill-plugin contains all of the basic action 

such as kick, intercept, chase, chip etc. And strategy-plugin contains defense and attack 

system. 
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Fig. 3. RoboKit structure 

4 Reinforcement Learning 

Reinforcement learning has become an important method in RoboCup. Stone, Ve-

loso[4][5][13], Aijun[2], Riedmiller[14] et al. have done a lot of work on the online 

learning , SMDP Sarsa(λ) and MAXQ-OP for robots planning. 

Free-kick plays a significant role in the offense, while the opponents’ formation of 

defense are relatively not so changeable. Our free-kick strategy is inspired from that a 

free-kick can also be treated as a MDP and the robot can learn to select the best free-

kick tactics from a certain number of pre-defined scripts. For the learning process, we 

also implement the MAXQ method to handle the large state space. 

In this chapter we will first briefly introduce the MDP and MAXQ, further details 

can be found here[10]. Then, we will show how to implement this method in our free-

kick strategy, involving the MDP modeling and the sub-task structure construction. 

4.1 MAXQ decomposition 

The MAXQ technique decomposes a markov decision process M into several sub-pro-

cesses hierarchically, denoted by {𝑀𝑖 , 𝑖 = 0, 1, … , 𝑛}. Each sub-process 𝑀𝑖 is also a 

MDP and defined as ⟨𝑆𝑖 , 𝑇𝑖 , 𝐴𝑖 , 𝑅𝑖⟩, where 𝑆𝑖 and 𝑇𝑖 are the active state and termination 

set of 𝑀𝑖  respectively. When the active state transit to a state among 𝑇𝑖 , the 𝑀𝑖  is 

solved. 𝐴𝑖 is a set of actions which can be performed by M or the subtask 𝑀𝑖. 𝑅𝑖(𝑠’|𝑠, 𝑎) 
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is the pseudo-reward function for transitions from active states to termination sets, in-

dicating the upper sub-task’s preference for action a during the transition from the state 

𝑠′ to the state 𝑠. If the termination state is not the expected one, a negative reward would 

be given to avoid 𝑀𝑖 generating this termination state[10] 

 𝑄𝑖
∗(𝑠, 𝑎) = 𝑉∗(𝑎, 𝑠) + 𝐶𝑖

∗(𝑠, 𝑎) (1) 

Where 𝑄𝑖
∗(𝑠, 𝑎) is the expected value by firstly performing action 𝑀𝑖 at state 𝑠, and 

then following policy 𝝅 until the 𝑀𝑖 terminates. 𝑉𝜋(𝑎, 𝑠) is a projected value function 

of hierarchical policy 𝝅 for sub-task in state 𝑠, defined as the expected value after exe-

cuting policy 𝝅 at state 𝑠, until 𝑀𝑖 terminates. 

 𝑉∗(𝑖, 𝑠) = {
𝑅(𝑠, 𝑖)                   𝑖𝑓 𝑀𝑖  𝑖𝑠 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒

𝑚𝑎𝑥𝑎∈𝐴𝑖
𝑄𝑖

∗(𝑠, 𝑎)            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

𝐶𝑖
∗(𝑠, 𝑎) is the completion function for policy 𝝅 that estimates the cumulative re-

ward after executing the action 𝑀𝑎, defined as: 

 𝐶𝑖
∗(𝑠, 𝑎) = ∑ 𝛾𝑁𝑃(𝑠′, 𝑁|𝑠, 𝑎)𝑉∗(𝑖, 𝑠′)𝑠′,𝑁  (3) 

The online planning solution is explained in[2], and here we list the main algorithms. 

Algorithm 1. OnlinePlanning () 

Input: an MDP model with its MAXQ hierarchical structure 

Output: the accumulated reward 𝑟 after reaching a goal 

𝑟 ← 0 
𝑠 ← 𝐺𝑒𝑡𝐼𝑛𝑖𝑡𝑆𝑡𝑎𝑡𝑒() 
𝑟 ← 𝑟 + 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐴𝑐𝑡𝑖𝑜𝑛(𝑎0, 𝑠) 
while 𝑠 ∉ 𝐺0  

do 

 〈𝑣, 𝑎𝑝〉 ← 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑆𝑡𝑎𝑡𝑒(0, 𝑠, [0,0,··· ,0]) 

 𝑟 ← 𝑟 + 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝐴𝑐𝑡𝑖𝑜𝑛(𝑎𝑝, 𝑠) 

  𝐺𝑒𝑡𝑁𝑒𝑥𝑡𝑆𝑡𝑎𝑡𝑒() 
return 𝑟 

Here we set an initial action update before the system start updating. The initial ac-

tion enable us to modify the strategy according to the opponent’s defense formation. 

Algorithm 2. EvaluateState(i,s,d) 

Input: subtask 𝑀𝑖, state 𝑠 and depth array 𝑑 
Output: 〈𝑉∗(𝑖, 𝑠), 𝑎𝑝

∗〉 

if 𝑀𝑖 is primitive then return 〈𝑅(𝑠, 𝑀𝑖), 𝑀𝑖〉 
else if 𝑠 ∉ 𝑆𝑖  𝑎𝑛𝑑 𝑠 ∉ 𝐺𝑖 then return 〈−∞, 𝑛𝑖𝑙〉 
else if 𝑠 ∈ 𝐺𝑖 then return 〈0, 𝑛𝑖𝑙〉 
else if 𝑑[𝑖] ≥ 𝐷[𝑖] then return 〈𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑉𝑎𝑙𝑢𝑒(𝑖, 𝑠), 𝑛𝑖𝑙〉 
else 

 〈𝑣∗, 𝑎𝑝
∗〉 ← 〈−∞, 𝑛𝑖𝑙〉 
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  for 𝑀𝑘 ∈ Subtasks(𝑀𝑖) do 
if 𝑀𝑘 is primitive or 𝑠 ∉ 𝐺𝑘 then 

   〈𝑣, 𝑎𝑝〉 ← EvaluateState(𝑘, 𝑠, 𝑑) 

    𝑣 ← 𝑣 + EvaluateCompletion(𝑖, 𝑠, 𝑘, 𝑑) 
    if 𝑣 > 𝑣∗ 

     〈𝑣∗, 𝑎𝑝
∗〉 ← 〈𝑣, 𝑎𝑝〉 

  end 

return 〈𝑣∗, 𝑎𝑝
∗〉 

Algorithm 2 summarizes the major procedures of evaluating a subtask. The proce-

dure uses an AND-OR tree and a depth-first search method. The recursion will end 

when:  

(1) the subtask is a primitive action;  

(2) the state is a goal state or a state outside the scope of this subtask;  

(3) a certain depth is reached. 

Algorithm 3. EvaluateCompletion (i,s,a,d) 

Input: subtask Mi, state s, action Ma and depth array d 

Output: estimated C∗(i, s, d) 

G̃a ← ImportanceSampling(Ga, Da) 

v ← 0 
for s′ ∈ G̃a do 

 d′ ← d; 

 d′[i] ← d′[i] + 1 

 v ← v +
1

G̃a
 EvaluateState(i, s′, d′) 

end 

return v 

Algorithm 3 shows a recursive procedure to estimate the completion function, where 

G̃a is a set of sampled states drawn from prior distribution 𝐷𝑎 using importance sam-

pling techniques. 

 

4.2 Application in free-kick 

Now we utilize the techniques we mentioned in our free-kick strategy. First we should 

model the free-kick as a MDP, specifying the state, action, transition and reward func-

tions. 

State space: As usual, the teammates and opponents are treated as the observations of 

environment. The state vector’s length is fixed, containing 5 teammates, 6 opponents, 

a ball and the agent self. 

Action space: For the free-kick, the actions includes kick, turn and dash. They are in 

the continuous action space. 

Transition: We predefined 60 scripts which tell agent the behavior of team-mates. 

These scripts are chosen randomly. For the opponents, we simply assume them moving 
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or kicking (if kickable) randomly. The basic atomic actions is modeled from the robot 

kinematic analysis. 

Reward function: The reward function considers not only the ball scored, which may 

cause the forward search process terminates without rewards for a long period. Consid-

ering a free-kick, a satisfying serve should never be intercepted by the opponents, so if 

the ball pass through the opponents, we give a positive reward. Similarly, we design 

several rewards function for different sub-tasks. 

Next, we implement MAXQ to decompose the state space. Our free-kick MAXQ 

hierarchy is constructed as follows: 

 

Primitive actions: We define three low-level primitive actions for the free-kick process: 

the kick, turn and dash. Each primitive action has a reward of -1 so that the policy reach 

the goal fast. 

Subtasks: The kickTo aims to kick the ball to a direction with a proper velocity, while 

the moveTo is designed to move the robot to some locations. To a higher level, there 

are Lob, Pass, Dribble, Shoot, Position and Formation behaviors where: 

(1) Lob is to kick the ball in the air to lands behind the opponents;  

(2) Pass is to give the ball to a teammate. 

(3) Dribble is to carry the ball for some distance. 

(4) Shoot is to kick the ball to score.  

(5) Position is to maintain the formation in the free-kick. 

Free-kick: The root of the process will evaluate which sub-task should the place kicker 

should take. 

Our hierarchy structure is shown in Figure 4. Note that some sub-tasks need param-

eters and they are represented by a parenthesis. 

 

Fig. 4. Hierarchical structure of free-kick 
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5 Conclusion 

This paper presents our robot’s hardware and software framework. We implement the 

reinforcement learning in our free-kick tactic. Based on the related work, we divide the 

free-kick into some sub-tasks and write some hand-made routines for the learning pro-

cess. Our contribution lies in the realization of reinforcement learning in the SSL, which 

is a first step from simulation to reality.  
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