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Abstract. In this paper, we present our team’s recent work in expand-
ing our team strategy to comply with the RoboCup Small-Size League’s
recent rule changes and in learning new policies for our robots. In regards
to the new rules, we have expanded our offensive strategy to utilize all of
the robots across the larger field size. Our defensive strategy was changed
to handle the new rectangular defense area. In learning new policies, we
focused on using machine learning to automate the process of creating
different parts of the Skills, Tactics, and Plays hierarchy. Lastly, we dis-
cuss new robots and hardware.

1 Introduction

The CMµs 2018 team from Carnegie Mellon University (Figure 1) builds upon
the CMDragons team, and its extensive research from previous years (1997–
2010, 2013-2016 [1], [2]) in multiple areas, including path [3] and dribbling [4]
planning, team architecture [5], among others. This year marked a big change
for our team with the development of new robots and the commitment to a
new research focus. Building upon our legacy, we will now drive our research
from a more data and learning oriented perspective. This new research focus
inspired the name change, with µ symbolizing one of the many parameters used
in learning.

This paper presents the technical details of our most recent work, since
the Team Description Paper of 2016 [2]. The overall architecture has remained
largely unchanged since 2010 [6,7,5], and in this paper we focus on the novel
contributions from this year. Our team website1 provides a thorough description
of the robots hardware and links to technical documents from previous years.

In the following sections, we present an overview of our overall team co-
ordination architecture, and our most recent work related to improvements in
our offense, defense, and hardware. We also provide an overview of our ongoing
work in incorporating learning techniques into our team. Section 7 summarizes
the contributions and discusses future work.

1 http://www.cs.cmu.edu/~robosoccer/small/

http://www.cs.cmu.edu/~robosoccer/small/
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Fig. 1. CMµs team of soccer robots. In the background, our layered disclosure
viewing and debugging tool [8].

2 Team Coordination Overview

At the core of controlling and coordinating our team is the Skills, Tactics and
Plays (STP) architecture [5]. The main contribution of STP is the separation
between single robot and team behavior, where team behavior results from exe-
cuting a coordinated sequence of single robot behaviors for each team member.
A play consists of a fixed team plan with a set of applicability and termination
conditions, and a role for each team member. Each role defines a sequence of
tactics, and is assigned dynamically at runtime through auctioning. A tactic en-
capsulates the behavior of a single robot. Specifically, a tactic determines the
skill state machine to be executed by the robot, and sets the parameters to be
used when using specific skills. Finally, a skill is a control policy for performing
some complex action.

A key component to our team performance is our zone-based coordination,
which dynamically divides the field in several zones to be assigned to different
robots. This has advantages over position-based planning, since we can create
and carry out plans independently of the opponents’ starting positions [9]. Fig-
ures 2 and 3 depict an example of the dynamic zone-based coordination within
a robot soccer match.
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Fig. 2. Attacker shown in the red cir-
cle has the ball with the other two
teammates located in their assigned dy-
namic zones.

Fig. 3. Following Figure 2, a new dy-
namic zone is placed around the previ-
ous attacker and the teammate on the
right is assigned the attacker role.

3 Offense

Following the rule changes made to the Small-Size League this year, we updated
our offensive strategy to accommodate the new number of robots and field size,
as well as the automatic ball placement requirement.

3.1 Increased Number of Robots and Field Size

In response to the 2018 RoboCup Small-Size League rules, we have put signifi-
cant effort in updating our offensive team coordination strategy. In particular, we
expanded our offense plays [5] to better take advantage of the increased number
of robots and field size. The first consideration we made was balancing the num-
ber of robots on the offense and defense of our team. The second consideration
regards the placement of the robots on the field, to efficiently make use of the
increased field size. We also updated our zone-based coordination strategy [9],
by creating new dynamic zones across the entire field.

Additionally, we are developing several new strategies for maintaining ball
possession as our team moves the ball down the field towards the opponent’s goal.
Some of these strategies are described in more detail on the Learning section.

3.2 Automatic Ball Placement

Our offense can now handle the new rule on automatic ball placement. Taking
advantage of existing skills and tactics, such as dribbling and safe navigation, our
robots are now able to place the ball automatically on the field, at the referee’s
request.

4 Defense

Following the rule changes, our team has been overhauling our defense strategy.
We started by updating our defensive plays to account for the new rectangular
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Fig. 4. Passing with Marking domain [10].

defense area. This entailed the specification of new positions for the defensive
players, as well as a new coordinated movement strategy.

Additionally, the increased number of robots has also forced us to reevalu-
ate our dynamic zone-based defense coordination scheme. In particular, we are
working on making some of our defensive players more aggressive in regaining
ball possession, and limiting the open angles to the goal.

5 Learning

As discussed before, our current architecture uses a hierarchical policy referred
to as Skills, Tactics and Plays [5]. In previous years, all the components of
this policy have been hand-coded using mostly human-designed heuristics. This
year, as part of our new research focus, we are attempting to automate the
creation of some parts of this hierarchical policy using machine learning and
deep reinforcement learning techniques. Instead of designing and creating every
low-level skill by hand, some of the skills will be learned directly by the robots.
Similarly, some of the multi-agent coordination at the play level will be learned
automatically.

We have also been attempting at using learning approaches for ball posses-
sion purposes. One of the shortcomings of human heuristics is at predicting the
outcomes of using a tactic within the STP hierarchy. As such, we have been
using deep learning techniques to predict the probability of success of eventually
passing to a teammate when using different tactics, given the current state of the
world [11]. The domain we used for testing is the Passing with Marking domain,
a domain similar to keep-away, see Figure 4. In this domain, we have two blue
and two yellow soccer robots. The objective is for the blue robot, that starts
with the ball, to pass the other blue robot while the yellow robots attempt to
steal and intercept the pass. To reiterate, we are attempting to learn the proba-
bility that the blue robot will successfully passing to its teammate using different
tactics in this dynamic adversarial domain.

Additionally, we are utilizing state-of-the-art DeepRL algorithms such as
DQN [12] and DDPG [13] to train tactics for the competition, and we have been
testing these methods on a grid world Keepaway domain [14] where two teams
play against each other.
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Fig. 5. A robot shown with and without protective cover.

6 Hardware

This year we are getting new robots for our team. These new robots will need
to be modeled so that their physical abilities work properly with our previously
developed tactics and skills. We will also explore enhancing the skills with the
new robots’ speed and acceleration. In particular, this will be important on our
defense side and goal keeping.

We are also improving the way we control our robots over radio. Preliminary
experiments seem to suggest that a team of eight robots puts too high of a strain
on our existing radio hardware. We are buying new radio hardware in order to
reliably control the eight robots on the field.

Regardless of the new robot hardware, we are still capable of competing with
our current robots. A priority for our team is to ensure that we are backwards
compatible with our existing robots. Figure 5 shows one of our current robots
without the protective cover.

7 Conclusion

This paper presents the changes of the CMµs team since our last (CMDragons)
Team Description Paper [2]. Our focus has been placed on updating our offense
and defense strategy to handle the new 2018 RoboCup Small-Size League rules.
Our new name is a symbol of the large changes we are making to our team with
the development of new robots and a new research focus on applying learning
methods to improve our team’s performance.
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