
UMass MinuteBots 2018
Team Description Paper

Kyle Vedder, Edward Schneeweiss, Sadegh Rabiee, Samer Nashed,
Spencer Lane, Jarrett Holtz, Joydeep Biswas, David Balaban

University of Massachusetts Amherest, Amherst MA 01003, USA,
kvedder@umass.edu, eschnesweiss@umass.edu, srabiee@cs.umass.edu,

snashed@cs.umsass.edu, slane@cs.umass.edu, jaholtz@cs.umass.edu,

joydeepb@cs.umass.edu, dbalaban@cs.umass.edu

Abstract. This paper presents the changes in electromechanical design
and a selection of the algorithms used by the UMass MinuteBots, a
second-year RoboCup team from the University of Massachusetts Amherst.
The team uses RoboCup as a research application area for both hard-
ware and algorithms. We are actively researching many areas, includ-
ing multi-agent kino-dynamic navigation, time-optimal control, system
identification, and failure recovery. As a second-year team, our primary
objectives for the 2018 RoboCup competition are to solidify basic soc-
cer capabilities, develop more robust advanced tactics, and apply cur-
rent state-of-the-art research whenever possible. As winners of the lower
bracket in the 2017 competition, we expect to continue to improve and
play competitively against all teams.

1 Introduction

The UMass MinuteBots were founded at the University of Massachusetts Amherst
in 2017. We are associated with the Autonomous Mobile Robotics Laboratory1

in the College of Information and Computer Sciences. RoboCup is a research
platform for our lab, we believe excellence on the field will follow from excel-
lence in our research. Thus, our goal is to have a successful RobCup campaign
driven by an application of novel, state-of-the-art research. Research foci include
time-optimal control, joint kino-dynamic planning in adversarial domains, sys-
tem identification, and failure recovery. As a new team, much of our work has
involved reproducing existing algorithms from the literature however, we are
working on integrating our research into our RoboCup system.

This team description paper primarily discusses the modifications to our ex-
isting system that we are making for RoboCup 2018. A more comprehensive
description of our hardware and system architecture can be found in our 2017
TDP [1]. In Section 2, we first present our hardware updates for the MinuteBots
robots. Next, in Section 3, we present our approach to navigation and motion
control. We then discuss two of our additional research areas, specifically system

1 https://amrl.cs.umass.edu/

https://amrl.cs.umass.edu/


2 Kyle Vedder et al.

identification in Section 4 and semi-automated repair of robot state machines
in Section 5. Finally, we analyze our performance from the 2017 RoboCup, and
present both our short-term and long-term research goals in the RoboCup do-
main.

2 Hardware

In 2017, we completed the design and construction of our first generation of SSL
Robots. Our focus last year was on simplicity, durability, and ease of mainte-
nance. Of particular note is our modular electronics system in which there is
one main board and several driver boards. The main board integrates radio re-
ceiving, processing, and power distribution while the drivers control individual
components such as the motors or the kicker. Our completed hardware is shown
in Fig. 1. Additional detail about our electromechanical design can be found in
our 2017 TDP [1].

Fig. 1: Completed SSL Robots. The robot in the center showcases the modular
electronics. The large blue circuit board is the main board. The purple board
is the kicker driver. The green boards are the motor drivers. The robot on the
right has had the electronics removed for a better view of the drive system.

Since the 2017 competition, we have begun construction of two additional
robots and have made a few modifications to our design. In particular, we are
redesigning the dribbling and kicking mechanisms. We are also experimenting
with 3D printed parts to reduce weight and manufacturing costs. The dribbler
backstop was 3D printed and included on the 2017 robots. This is shown in
Fig. 2a. We have also printed a piece of our kicking mechanism and a portion
of our support structure which are shown in Fig. 2b. We experimenting with
replacing other aluminum parts with plastic, 3D printed versions, and hope to
integrate them into our robots for the 2018 competition.



MinuteBots 2018 TDP 3

(a) Dribbler Backstop (b) New Kicker Solenoid and Mid Plates

Fig. 2: Examples of 3D printed hardware we are experimenting with.

3 Navigation and Motion Control

We have identified navigation, motion control and safety to be three critical
low-level behaviors in the RoboCup domain. We believe making these three
behaviors robust and accurate is critical to fielding a competitive team. We also
have ongoing research in these areas.

For our navigation planning, we switched to planning on an eight-connected
grid. We found searching this eight-connected grid to be very fast using an exact
heuristic: the octile distance. As obstacle collision checks dominate the run-
time of eight-connected grid planners and many other roadmap based real-time
planners, developing strategies to limit this work is important to meeting our
real-time requirements. For eight-connected grids, we can algorithmically calcu-
late the eight-connected grid vertices potentially in collision with an obstacle on
an obstacle by obstacle basis, and arbitrarily combine these invalidated obstacle
collision lists together to form a full list of invalid vertices for each robot. This
avoids the very expensive overhead of computing invalid vertices on a robot by
robot basis. This is particularly useful in situations where an obstacle is only
applied to one robot. For example, the free kick taker is allowed within 500 mm
of the ball and other robots are not.

In addition, we are experimenting with path collision repair on eight-connected
grids. Detecting and repairing future collisions in individually planned paths is
important as without it we end up relying upon Dynamic Safety Search (DSS)
[2] to prevent collisions between our own robots. This is a computationally ex-
pensive process and often leads to highly suboptimal paths.

For motion control, we use two different control systems: Near Time Optimal
Controller (NTOC) [3] and Two Stage Optimal Control Solver (TSOCS). Both
NTOC and TSOCS were in use during the 2017 competition, though we have
been improving TSOCS and its associated uses since the competition. NTOC
solves the problem of arriving at a target configuration at rest with an arbitrary
start configuration and velocity. TSOCS is used to solve problems with arbitrary
start and end velocity and with bounded acceleration and unbounded velocity.
We use TSOCS for situations requiring quick action such as ball interception
and NTOC as our default control strategy.



4 Kyle Vedder et al.

As mentioned above, we continue to utilize DSS as the last step of our plan-
ning and control loop to help prevent any potential crashes. More information
on DSS can be found in the original paper [2].

4 System Identification and State Estimation

There exists remarkable amount of nonlinearity in the dynamics of the soccer
robots, which stems from various factors such as, the motors’ dynamics, the
differences in the wheels, as well as the wheels’ slippage. These nonlinearities
become specifically important at large acceleration and velocity magnitudes.
Moreover, each robot also behaves differently from the others due to mismatches
between their parts. Therefore, one simple kinematic model would not be able
to compensate for the nonlinearities in the dynamics of the robots and cannot
address the differences between robots’ dynamics either. Hence, it would result
in poor control and trajectory tracking.

In order to address this problem, we train robot specific kinematic models.
The models are in the form v = f(u), where v = [vx, vy, vθ]

T represents the
robot’s velocity in its own local frame of reference and u = [u1, u2, u3, u4]T

denotes the commanded wheel velocities. A model is trained for each robot us-
ing the data achieved while robots are running in a game without the need to
have the robots perform specific trajectories. This approach allows for contin-
uous learning and adaptation and removes the need for a separate calibration
process. A kinematic model is learned for each robot such that it minimizes the
robot’s pose prediction error over a horizon in the future. So far, we have tried
two different kinematic models. One is a linear model and the other is the combi-
nation of a linear model and a neural network (NN). The linear model estimates
the velocity of the robot as a linear function of the commanded wheel velocity
values. The NN model, however, is applied on top of a linear model and predicts
the the amount of error in the linear model’s estimate of the robot’s velocity. We
train three NN models, each responsible for estimating the linear model’s error
in predicting the robot’s forward velocity vx, lateral velocity vy, and rotational
velocity vθ respectively. We are using 2-layer neural networks with 10 nodes in
the hidden layer. The inputs of the networks are the commanded wheel velocities
and the outputs are the velocity corrections. The output of the NN model and
the linear model are then added together to produce the predicted robot velocity
given the commanded wheel velocities. In the first scenario, the relation between
the robot velocity and the wheel velocities is modeled using a linear model and
the difference between the robot’s dynamics is addressed by training a separate
instance of this model for each robot in an online fashion. In the second scenario,
however, not only different models are trained for different robots, but also the
nonlinearities in the robots’ dynamics are captured to some extent at the cost
of a more complex nonlinear kinematic model.

We have been able to improve the prediction accuracy of the robots using
both types of models and will be conducting more experiments to choose the best
function approximator for the robots’ motion models considering the complete



MinuteBots 2018 TDP 5

control loop. Fig. 3 shows the block diagram of system identification, where x
denotes the robot state consisting of the robot pose and velocity, x̂ represents
the observed robot state, u shows the velocity commands for each wheel, and xd

denotes the desired robot state. It should be noted that the inverse model block
on the figure would be replaced by a model predictive control (MPC) block,
when the motion model is not invertible such as the case with the kinematic
model being a neural network.

Fig. 3: Online system identification for the minutebots.

We use this learned model to inform our state estimation. In 2017, we used an
Extended Kalman Filter (EKF) as our estimation strategy however, this placed
restrictions on the motion models. Specifically, the model needs to be invertible
in order for it to be compatible with the EKF. We have since converted to
an Unscented Kalman Filter (UKF) which is compatible with the new motion
models we are testing.

5 Semi-Automated Repair of Robot State Machines

For RoboCup 2018 we are testing an approach to one of the difficulties of writing
complex controllers as robot state machines (RSMs). RSMs require reasoning
about the transition between states, and even when this logic is correct, it is
often parameter configuration dependent. As an example we use a version of
our attacker RSM. The attacker has five states, a start state which handles
the initial startup of the RSM, a GoToBall state which handles traveling to a
slow or motionless ball, Interception, which handles the case of intercepting a
moving ball at the correct angle to kick on goal, Catch, which handles the case
of intercepting a ball moving directly towards the robot, Kick, which kicks the
ball towards the selected target when the robot is correctly setup, and finally
Finish, which is entered after a completed kick. There are 12 parameters which
are used for determining when to transition between these states. Fig. 4 shows a
diagram of an attacker state machine and an example failure and success, where
the difference between success and failure is the parameter configuration for the



6 Kyle Vedder et al.

transition into the kick state. In this example the robot travels in the intercept
state while attempting to reach the necessary conditions for kick. There are six
parameters used as thresholds to determine if a robot is correctly positioned for
a kick, and in our failure case these thresholds are never met, causing the robot
to follow the ball indefinitely.

Start

Go To

InterceptCatch

Kick

End

(a) State machine (b) Execution trajectories

Fig. 4: A robot soccer attacker a) represented as a state machine, with b) suc-
cessful (blue) and unsuccessful (red) trajectories of the attacker intercepting a
ball (orange) and shooting it into the goal. The point of divergence between
executions is highlighted with the dashed green box.

Configurations that work on one robot, or in one environment, may not work
on another robot or in another environment. While manually tuning the param-
eters can be arduous and error prone, the debugging process offers the following
key insights: the roboticist debugging can frequently identify when something
went wrong, which state the behavior was executing, and which corrected state
the behavior should have executed for successful operation. With this informa-
tion we have partial specification of the desired behavior, this specification details
what should have happened, but not the complete sequence of states necessary
to get there, or the parameter values necessary to achieve it. Based on this, we
repair robot state machine transitions as follows:

1. Log execution of the robot state machines at run time.
2. Replay the logs and provide corrections or reinforcements to a small subset

of the state transitions.
3. Automatically adjust the parameter of the robot state machine so as to

satisfy as many of the corrections as possible.

For the last step of this process we use a novel approach leveraging program
repair techniques to reduce the problem of finding parameters which satisfy our



MinuteBots 2018 TDP 7

human corrections to a MAX-SMT problem over the set off all assertions. Since
the tactics in the MinuteBots codebase are written predominantly as state ma-
chines, we can then use this system to simplify parameter configuration and the
transfer to new robots and environments. Note that updating these parameters
is not done in real time, instead happening after games and practices when we
have identified failure cases.

6 Conclusion

In 2017, UMass MinuteBots team won the lower bracket finals after placing 4th
in our group during the group stage. We improved our software and refined
our strategy throughout the week of the competition and managed to defeat
RoboTeam Twente 3 to 0 in the lower bracket final, resulting in a final rank of
13th overall. The results for all games played are shown in Table 1.

Table 1: Results of the 2017 Matches
Game Opposing Team Goals Scored Goals Recieved Result

Group D, Game 1 ER-Force 0 7 Loss

Group D, Game 4 RoboFEI 0 0 Draw

Group D, Game 6 SRC 0 4 Loss

Group D, Game 8 Kiks 1 1 Draw

Lower Quarter Final RoboIME 4 1 Win

Lower Semi Final RoboJackets 1 0 Win

Lower Final Robo Team Twente 3 0 Win

Our primary goals for this year are threefold. First, we would like to continue
to perfect the basics of robot soccer, including control, safe navigation, basic co-
ordination, and development of fully functional and reliable hardware. Second,
we would like to extend the capabilities of our previous MinuteBots team by
developing more robust advanced tactics such as ball interception, highly coor-
dinated passing, and threat-based defense. Third, we are committed to deploying
as much state-of-the-art research on our robots during competition as possible,
especially in the areas mentioned in Sections 3-6.

Our long-term goals for RoboCup SSL are centered on continued exploration
of the foundational problems and challenges related to both multi-agent systems
and long-term autonomy. We believe RoboCup SSL is an excellent platform for
exploring both of these topics.

References

1. K. Vedder, E. Schneeweiss, S. Rabiee, S. Nashed, S. Lane, J. Holtz, J. Biswas, and
D. Balaban, “Umass minutebots 2017 team description paper,” 2017.



8 Kyle Vedder et al.

2. J. R. Bruce and M. M. Veloso, “Safe multirobot navigation within dynamics con-
straints,” Proceedings of the IEEE, vol. 94, no. 7, pp. 1398–1411, 2006.

3. T. Kalmár-Nagy, R. DAndrea, and P. Ganguly, “Near-optimal dynamic trajectory
generation and control of an omnidirectional vehicle,” Robotics and Autonomous
Systems, vol. 46, no. 1, pp. 47–64, 2004.


	UMass MinuteBots 2018 Team Description Paper

