
RobôCIn 2019 Team Description Paper

Cećılia Silva, Felipe Martins, João Gabriel Machado, Lucas Cavalcanti, Renato
Sousa, Roberto Fernandes, Victor Araújo, Vińıcius Silva, Edna Barros,

Hansenclever F. Bassani, Paulo S. G. de Mattos Neto, and Tsang Ing Ren

Centro de Informática, Universidade Federal de Pernambuco.
Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife - Pernambuco, Brazil.

robocin@cin.ufpe.br

https://cin.ufpe.br/~robocin

Abstract. RobôCIn has been participating in Latin American Robotics
Competition (LARC) since 2016. In this paper, we present the first ver-
sion of our robot intending to compete in the Small Size League (SSL)
in RoboCup 2019 in Sydney, Australia. The main focus of this paper is
to detail the mechanical and electronic systems we developed, as well as
the strategy and software solutions we designed to attend the RoboCup
competition.

Keywords: Small Size League · RoboCup 2019 · RobôCIn.

1 Introduction

RobôCIn is a team from Universidade Federal de Pernambuco (UFPE), Brazil.
In 2016 we started to participate in the IEEE Very Small Size Soccer (VSSS) at
LARC, and since 2018 we are developing the first version of our robotic system
to compete in Small Size League (SSL). Last year we participated for the first
time in the SSL in LARC at João Pessoa, Brazil and achieved fifth place.

This paper presents an overview of our system. Section 2 describes the me-
chanical design which was inspired by the work of other established teams in the
competition. Section 3 explains the proposed embedded design, composed by
the electronic project and proposed communication protocol. Section 4 shows
our software and strategy development. Section 5 summarizes our work and
present future works.

2 Mechanical Design

In Figure 1 we present an internal and an external view of the second version
of our robot. We use Autodesk Inventor to design the robot’s parts, and we
printed 3D pieces for all the structure to reduce costs and decrease the number
of machined parts. It’s a challenge to have a reliable robot while we use 3D
parts. Some challenges we faced during development in 3D were the differences
in size between the projected parts and those printed due to thermal expansion
and associated uncertainties. Also, the same part on two different printers has
different dimensions. Our robot specifications can be found in Table 1.



2 RobôCIn Team Description Paper for RoboCup 2019

Table 1. Robot Specifications

Robot Version 2019

Driving motors Maxon EC-45 flat - 50W

Max % ball coverage 19.55%

Microcontroller STM32F767ZI

Gear Transmission 18 : 60

Gear Type External Spur

Wheel GTF Robots SW-504

Total Weight 2.44 kg

Dribbling motor Maxon EC-max 22, 25W

Encoder MILE 1024 CPT

Dribbling Gear 50 : 30

Dribbling bar diameter 15mm

Max. kick speed 6.5m/s

Communication Link nRF24L01+

Battery LiPo 2200mah 4S 35C

2.1 Motion System

Extensive research was made to define the ideal place to position the motors,
considering cost, dimensions, reliability, and efficiency. The Maxon EC-45 flat
50W [7] was chosen because it meets the requirements of speed and torque for our
robot. We use four motors to drive our robot, the two front motors are spaced
angularly to form an angle of 120◦centered with the robot, and the two rear
motors are placed symmetrically concerning the longitudinal axis. This arrange-
ment was chosen to provide more space to the dribbler and kicker mechanisms
and giving more torque in forwarding and backward movements.

The omnidirectional movement is provided by four omniwheels SW-504 from
GTF Robots [3] with 50mm diameter and 18 aluminum rollers. Both the motion
system and dribbler mechanism use spur gears to optimize the internal space and
in the driven wheels also provides the necessary torque to drive the robot. The
gear ratio used for the motion system is 3:10, and for the dribbler mechanism is
50:26.

2.2 Dribbler

We use a Maxon EC-22 max motor to drive the dribbler mechanism together
with two spur gears. The dribbler bar has 14mm diameter and a study is being
developed to choose the best material among the following: silicone sealant,
rubber, solid silicone and flexible filament. In addition, a ball centering prototype
is also being developed based on the model presented by Op-AmP team in 2017
[12]. This mechanism has two helicoids at the extremes of the bar so that when
in contact with the ball produces an effort that pushes the ball to the center of
the dribbler bar.



RobôCIn 2019 Team Description Paper 3

Fig. 1. RobôCIn SSL robot v2019

The positioning of the dribbler on the robot chassis was based on a trigono-
metric study according to the 80/20 rule [10] which defines that 80% of the ball
needs to be free. Therefore we were able to calculate that the ideal height of
the dribbler is 43.8 mm, and this height was the starting point to project the
dribbler subsystem.

2.3 Kicker

The kicker mechanism has a hexagonal shape to prevent the model from ro-
tating during movement based on Immortals’ team [4]. This format also allows
accommodating an M8 x 65 bolt that will propel the mechanism when the coil
is triggered. The rest of the moving piece was made in 3D printer, for both the
chip kick and the front kick, as shown in Figure 2. For the coil we used enameled
copper wire AWG 22 with six turns to ensure correct coil operation. To return
the kicker to the starting position a common rubber alloy was used.

3 Embedded Design

Our electronic system has two boards: the main board and the kicker board and
was based on Tigers Mannheim’s 2018 Open Source Release [11]. The main board
is responsible for all the embedded computing and motors controllers, while the
kicker board is responsible for raising the battery supply and activating the
kick. A more detailed description of the main board and kicker board are given
in Sections 3.1 and 3.2, respectively.

3.1 Main Board

The main board has an STM32F767ZI processor from STMicroelectronics with
an ARM Cortex M7 core, 320kB RAM, a max clock of 216MHz, 6 SPI interfaces,



4 RobôCIn Team Description Paper for RoboCup 2019

Fig. 2. Kicker Mechanism

all pins are preemptive and up to 18 timers are available. This processor is
responsible for tasks such as wireless communication, to control the kicker board
and the dribbler, the reading of sensors and to control the driven motors.

We use a nRF24L01+ transceiver to communicate the base station and each
robot. It works with a 2.4GHz frequency and maximum transmission rate of
2Mb/s. This module shows good performance in competitions, because of it
high baud rate and low power consumption. The communication between the
transceiver and the processor is established through the SPI interface.

The activation of the four Maxon EC-45 flat 50W motors and the Maxon
EC-max22 25W motor is done by one Allegro A3930 motor controller and six
IRF8113 MOSFETs circuits for each motor. We use one of the eighteen timers
to generate PWM signals to control the motors speed. The driven motors are
equipped with a built-in encoder with resolution 1024 pulses per revolution. We
also have LEDs to display critical information about the robot, and a buzzer
with the purpose of increasing the security while handling of the robot.

Additional information to improve the reliability of the motion control can
be acquired by the MPU6000 module, with an accelerometer and a gyroscope,
and two lasers sensors (ADNS9800). These sensors also communicate with the
processor through the SPI interface. The main board has communication with
infrared sensors to detect the ball presence, a battery level checker and capacitor
voltage meter from the kicker board. The main board includes a voltage regulator
to 5V with LM2596 converter and a voltage converter to 3.3V with LM1117.
The architecture block diagram is shown in Figure 3. It contains the Arm M7
processor and the previously described components. Figure 4 shows the main
board design. It contains the four motor drivers with the required MOSFETs
for their operation as well as one motor driver for the Dribbler motor, two voltage
regulators (5v and 3.3V) supplying devices such as the nRF module, LEDs and
encoder, a reset button, an on-off switch and connection with the kicker board.



RobôCIn 2019 Team Description Paper 5

Fig. 3. Main board architecture

3.2 Kicker Board

The Kicker board has a DC-DC converter with boost topology. It is responsible
for raising the voltage from 14.8V (4S LiPo battery) to 250V then it charges two
parallel capacitors of 3300µF . When the kicker board receives the kick signal,
the capacitors discharge into a solenoid which activates either the chip kick or
the straight kick, according to the processor signal. Figure 5 shows the Kicker
board design.

An Analog to Digital (ADC) converter ADC1225051 is used to measure the
voltage in the kicker capacitors which is sent to the main board through SPI
protocol to control charging and discharging when required. This signal goes
through a voltage divider and an Operational Amplifier (Op-Amp) in comparison
mode which turns off a LED when the capacitor is discharged to indicate that
the robot is safe for handling by the team members. Also, a safety button on
the board allows the manual discharge of the capacitors without the need for a
signal from the main board.

3.3 Communication protocol

We use an nRF24L01+ module [8] to broadcast to all six robots in the same
channel. We use the star topology in this project to send individual messages
to each robot more effectively through one base station. This module also can
send messages in a rate up to 2 MBps in six different pipes. Thus, our pro-
tocol was build based on the nRF24L01P library, where we created a class
called nRF24Communication, and we set some parameters, such as the data
rate (2MBps), the transmitter operation (single channel for all robots) and the
way in which packets are sent.



6 RobôCIn Team Description Paper for RoboCup 2019

Fig. 4. Main board designed in Autodesk Eagle software

Bitfield data structure was chosen to build the packets as it allows bit manip-
ulation. Therefore, we can generate packets only with the needed bits, reducing
the total number of bytes and allowing sending a faster message. We choose to
send the data in an union data structure so that the packet can be decoded as
a vector of bytes.

Table 3 shows the packet fields and its structure. The first field defines the
message type that allows creating new message types to the protocol. The second
field has the identification of the robot that should read the message. The next
four fields are the linear velocity (vx and vy), the angular speed (ω) and the
robot orientation concerning the origin (θ). The remaining fields refer to the
kicker mechanism. Figure 6 shows the communication flow.

Table 2. Communication Flow

TypeMsg ID Vx Vy W θ Kick Chip Force

4 bits 4 bits 20 bits 20 bits 20 bits 20 bits 1 bit 1 bit 1 bit

12 bytes
Table 3. Protocol message fields



RobôCIn 2019 Team Description Paper 7

Fig. 5. Kicker board designed in Autodesk Eagle software

Fig. 6. Communication Flow

4 Strategy

As the team is participating for the first time in SSL, the early software studies
were dedicated for defining the architecture and strategy to path planning. Sub-
section 4.1 presents the software architecture proposed by the team and the data
flow in this architecture and Subsection 4.2 detail the path planning algorithm
chosen by the team.

4.1 High level architecture and data flow

We used two architectures as a basis for the construction of the proposed struc-
ture. The first is Skill, Tactics and Play [1], which suggest the use of three levels
of tasks. The higher level task is Play, which defines the plays in which all robots



8 RobôCIn Team Description Paper for RoboCup 2019

are playing. In a Play, every player executes a Tactic in a state machine where
each state is a Skill. A Skill is a set of low-level functions such as pass the ball,
kick in the goal or move to a set location. The second architecture was proposed
by the ER-Force team [5]. In this architecture, each player acts as an autonomous
agent to the lower level tasks but with a central software that determines the
high-level functions for all players. As the players are agents, they can communi-
cate with each other to combine moves and make decisions faster. However, the
full use of this architecture increases the number of message exchange between
players and can lead to a bottleneck in the communication network.

With the use of concepts of both architectures, RobôCIn team proposes to
use a hybrid architecture based on a master control. It may evolve into a de-
centralized approach, with players acting as autonomous agents. Figure 7 shows
an overview of this architecture showing the used classes. Another advantage of
our architecture is the parallelism, where each class can become a thread. In the
next subsections, we detailed each class present in the architecture.

Fig. 7. Overview of the proposed software architecture

DataWorld. This class is responsible for receiving external data from SSL-
Vision [13] and SSL Referee. Due to the high rate of receipt of external packages
(up to 800 Hz), we decided to create a thread only for this function. Also, we
established that this class would be responsible for handling any possible receipt
of player data. This feedback from the players can enhance their position with
the use of filters, such as the Kalman or Markov filter.

The Frame structure is the output to subsequent classes. This structure has
the updated positions and contains the most recent information on the positions
of the elements in the field: robots, ball, and the commands received by SSL



RobôCIn 2019 Team Description Paper 9

Referee. In this way, the other classes of the architecture can request the most
current Frame when it is needed and do not cause a bottleneck while receiving
the data.

Decision. This class stands for the choice of Play that will be executed by the
players, and it runs in parallel along with the other threads with the frequency
of 60 Hz. It requires the most recent Frame in DataWorld with each execution.
The choice of Play to be executed can be influenced by the game situation and
the by the referee signals. There are static situations such as the corner kick,
kick off and penalty kick where a predefined play can be chosen.

There is a situation in the game where it requires a more refined choice of
play like when the ball is free, and the game is being played. In this situation,
the tactic of the defenders and goalkeeper must be chosen so that they can block
an eventual opponent’s kick. The tactics of the support and attacker players are
selected so that the players can position themselves to pass and receive the ball
in conditions to kick to the goal, respectively — the general situation of the
game also influence the tactics of advanced players.

Player. This class defines each tactic previously chosen. It receives as input the
position of all elements in the field and the move defined by the Decision class
together with the tactic each player will execute. Thus, the Player class set the
state machines of each tactic, and they can be executed independently. Also,
there is a framework for exchanging messages from threads via the software to
allow cooperation between players.

The internal architecture of the Player class with state machines of the tactics
and definitions of the Skills, as shown in Figure 8. The Skill class defines path
planning algorithms, opponent marking algorithms, kicking decision and others.
Because one thread controls each player, it is expected as the output of each
thread only one goal position of each player.

Navigation. This class receives the most recent position of the player coming
from DataWorld and the target positions from each Player as inputs. Then, it
chose the navigation strategy to calculate the linear and angular velocities for
each robot. The navigation task also runs in parallel with the code with an
update frequency of 60Hz, to ensure a high correction rate at speed sent to the
robot.

The Communication class is defined inside the Navigation class and is re-
sponsible for sending information from the base station to every robot in the
field. Communication was chosen to be defined inside Navigation instead of one
in each Player to avoid concurrency of many threads trying to access the same
resource. Therefore the radio is only used by Navigation thread when it has the
new speeds for each robot.



10 RobôCIn Team Description Paper for RoboCup 2019

Fig. 8. Player Class internal diagram

4.2 Path Planning

Path Planning is is one of the most critical Skills in this architecture. It is respon-
sible for moving the robot around the field and is the first to be implemented.
The first step is to plan the path to be performed out in such a way that this
path is optimal and it avoids the collision of the robot with obstacles. To plan
the path, it must have a navigable map representation of the world. There are
several approaches, like potential fields, Voronoi diagram, and visibility graph
[9].

We first considered the use of potential fields method since we already use
this approach in VSSS. To represent the SSL division B field [10] with 9m× 6m
with an accuracy of 1cm it would be necessary to use 8MB memory to map for
each robot. It would generate a significant overhead of time to go through all
this map with this accuracy.

Another possibility of map representation is the use of the Voronoi diagram
[2], which employs those paths that maximize the distance to the obstacles as
possible paths. This approach aims to find the safer path, but such a path may
become too long and too slow to use in a competition. The computational cost
of the construction of a Voronoi diagram is O(n × log(n)). However, since it is
necessary to execute the fastest path to the goal, the Voronoi diagram was not
used.

Visibility Graph [6] presents lower computational cost than potential fields
and can find the smallest path to the target position among the analyzed ap-
proaches. It constructs a representation in graphs where the obstacles are poly-
gons, and the initial and final points are vertices of the graph. As the robots
are circular, they were represented as equilateral triangles circumscribed to the
circle that represents the robot. Thus, the edges of the polygons representing
the obstacles are considered as edges of the graph.

From the representation of the obstacles and the initial and objective points,
the visibility graph is constructed connecting all the vertices of the graph, except



RobôCIn 2019 Team Description Paper 11

Fig. 9. Visibility Graph applied to SSL robots.

those that cross an obstacle. Thus, possible paths that pass close to obstacles
will be created, but they will not collide with any object and are smaller than
those proposed by the Voronoi diagram. The computational cost of this approach
is O(n3), where n is the number of vertices in the graph, that is, the cost is
proportional to the number of obstacles and the chosen representation for the
obstacles. Figure 9 shows an example of the use of the visibility graph in SSL.

5 Conclusion

In this paper, we presented our first project to compete on SSL. To finish this
project, we dived our efforts in 3 main areas: Mechanics, Electronics and Soft-
ware Development. Because of this division, we could keep the team working
simultaneously and start competing in such a short development time.

As this is our first project, we observe a few improvements we could do, such
as the development of more reliable motion system, a better control strategy,
a more efficient electronic board design and better decision software to choose
roles for the robots.

6 Acknowledgement

This is work is supported by Centro de Informática (CIn) - UFPE, Laboratório
para Integração de Circuitos e Sistemas (LINCS) and Centro de Tecnologias
Estratégicas do Nordeste (CETENE).

References

1. Browning, B., Bruce, J., Bowling, M., Veloso, M.: Stp: Skills, tactics, and plays for
multi-robot control in adversarial environments. Proceedings of the Institution of
Mechanical Engineers, Part I: Journal of Systems and Control Engineering 219(1),
33–52 (2005)

2. Choset, H., Walker, S., Eiamsa-Ard, K., Burdick, J.: Sensor-based exploration:
Incremental construction of the hierarchical generalized voronoi graph. The Inter-
national Journal of Robotics Research 19(2), 126–148 (2000)



12 RobôCIn Team Description Paper for RoboCup 2019

3. GTF Robots: Omni directional Wheel SW-504 (6 2017)
4. Immortals Team: 3D Printed Robot (2018), https://github.com/Ma-Ghasemieh/

Immortals_ssl_opensource_mech

5. Lobmeier, C., Burk, D., Wendler, A., Eskofier, B.M.: Er-force 2018 extended team
description paper (2018), robocup Small Size League, Montreal, Canada, 2018

6. Lozano-Pérez, T., Wesley, M.A.: An algorithm for planning collision-free paths
among polyhedral obstacles. Communications of the ACM 22(10), 560–570 (1979)

7. Maxon Motors: Maxon EC 45 flat datasheet (5 2017)
8. Semiconductor, N.: nrf24l01+ single chip 2.4 ghz transceiver. Datasheet, September

(2008)
9. Siegwart, R., Nourbakhsh, I.R., Scaramuzza, D.: Introduction to autonomous mo-

bile robots. MIT press (2011)
10. Small Size League Technical Committee: Laws of the RoboCup Small Size League

2019 (12 2018)
11. Tigers Mannheim Team: Open Source Software and Hardware (2018), https://

tigers-mannheim.de/index.php?id=65

12. Yoshimoto, T., Horii, T., Mizutani, S., Iwauchi, Y., Yamada, Y., Baba, K., Zenji, S.:
Op-amp 2017 team description paper (2017), robocup Small Size League, Nagoya,
Japan, 2017

13. Zickler, S., Laue, T., Birbach, O., Wongphati, M., Veloso, M.: Ssl-vision: The shared
vision system for the robocup small size league. In: Robot Soccer World Cup. pp.
425–436. Springer (2009)


