background image

KIKS 2010 Team Description

 

Ryuhei Sato

1

, Takato Horii

1

, Kenji Inukai

1

, Shoma Mizutani

1

Kosei Baba

1

, Masato Watanabe

1

, Kazuaki Ito

1

 and Toko Sugiura

 

1

 Toyota National College of Technology, 

Department of Electrical and Electronic engineering, 

2-1 Eisei-cho, Toyota Aichi, 471-8525, Japan 

 

sugi@toyota-ct.ac.jp 

URL

http://www.ee.toyota-ct.ac.jp/~masa/2010/kiks2.htm 

Abstract.

 This paper is used to qualify as participation to the RoboCup 2010 

small-size league (SSL) about team “KIKS”. Our robot is designed under the 
Rules 2010 in order to participate in the SSL competition held in Singapore. 
The overview for robots’ hardware of our team is described . 

Keywords: 

RoboCup, small-size league, brushless DC motor, motion control, 

IR-sensor. 

1   Introduction 

Main purpose of our participation to the RoboCup world competition is 

confirmation and evaluation of the results of the PBL (Project Based Learning) 
experiments. We have educated the creative minds of students using the robot contest 
held in our department of electrical and electronic engineering. For the RoboCup 
world competition, our team has participated for six years since 2004, continuously. 
We came in the top 8 in Graz 2009. Thus, since the aim will be higher, further 
improvements are also needed in this year. 

Recently, most of best top teams use the brushless DC motors. But we still use 

brushed one (REmax 24). If we can replace to the blushless one, the robots must have 
more torques and speeds. So, now we try to replace that and also review whole 
mechanical design. 

The main topics of developed system in 2010 are following term, 

  Enhancement of the performance of dribbling and kicking devices of the robot 

in SSL. 

  Evaluation of the performance of ring-wheels and chip-kick devices. 

  Development of the circuit for DC blush less motors. 

                                                           

 

pdftohtml_folder/2010_TDP_KIKS-html.html
background image

2      Development of new robots 

2.1   The entire structure design. 

At present time, we have changed three parts. 

1.

 

Replacement to brushless DC motors (Maxon EC45flat) from brushed one 
(Maxon REmax24). 

2.

 

Redesign of chip-kick device. 

3.

 

Whole mechanical redesign taken into account of maintenance. 

First, the motors which connect four ring-wheels were replaced to brushless motors 

(Maxon EC45flat). They were used pinion gear with 20 teethes and internal gear with 
72 teethes. That is, the reduction ratio is 1:3.6. The robot has not enough space to set 
the gear box. So, we had to redesign to take account of narrow space between motor’s 
axis and wheel’s that as shown in Fig. 1. 

 

Fig. 1 Ring-wheel and internal gear 

 

Second, the chip-kick devices were redesigned. The solenoid of chip-kick device 

was under a normal kick device for previous design. But the solenoid often 
electrically short out because of rubbing itself against floor. Thus, we replace the 
solenoid of chip-kick device on that of the normal kick device as shown in Fig. 2. As 
the results, we solved the problem mentioned above. Furthermore, because of large 
space between chip-kick device’s bar and solenoid, it could get more kick power due 
to the principle of leverage. In addition, the redesigning brought many advantages for 
robot performance, e.g., more precise pass by kicking the center of a ball. 

 

pdftohtml_folder/2010_TDP_KIKS-html.html
background image

 

Fig. 2 Chip-kick device 

 

Finally, whole mechanical structures were improved taken into account the 

maintenance. Our robot had many problems in play because of components from a lot 
of hand-made parts. At present, we replaced the base-plate to thick one and also made 
the dents on the plate. The wheel units and kick devises were embedded in the plate as 
shown in Fig. 3. As the results, the number of screws to fix on the body were able to 
decrease because of the dents were worked effectively as shock-absorber against the 
forces from various directions. If the robot is broken, it will be fixed up easier due to 
the geometric design. 

 

 

Fig. 3 Whole mechanical design 

pdftohtml_folder/2010_TDP_KIKS-html.html
background image

2.2   Evaluation of wheel structure. 

Robots could run faster than last year by replacing the motors. As the results, 

robots were required high performance for ring-wheels. So, we tried to improve the 
ring-wheel’s structure. We had tested some types of ring-wheels as shown in Fig. 
4(a)-(d). Th
e (a) is the present type which has thin single tire with every thin unit 
house. The (b) type has double small tires with every unit. The (c) and (d) types have 
thick small tires which made normal rubber and silicone rubber tube, respectively. 

             

 

(a) with single ring tires                (b) with double ring tires 

             

 

(c) with thick rubber ring tires                    (d) with thick silicone rubber ring tires 

Fig. 4 Various type of the wheels used for evaluation. 

 

Fig. 5 Average time to reach to 1[m/s] from static condition for the robot 

(a) 

(b)

(c)

(d) 

pdftohtml_folder/2010_TDP_KIKS-html.html
background image

 

Fig. 6 Average speed of the robot on the same condition 

The experimental results of their performance are shown in Fig. 5-Fig. 6. Figure 5 

shows the average time to reach to 1[m/s] from static condition. Figure 6 shows the 
average speed on the same condition. Summarizing the results of our analysis, the (a) 
type showed the most stable and best performance. The reason why the (a) type 
showed the better results than the other types is not clear. It might be depended on the 
number of unit houses. Anyway, we decided to use (a) type. 

 

2.3   Chip-kick device structure 

We tried to improve the chip-kick device to investigate the relation between the 

length of rotation axis and angle within the limits of the space. By determining the 
length R and angle 

θ

, respectively as shown in Fig. 7, we have measured a range of 

ball when the R and 

θ

 were changed. The result shows that a range of ball is strongly 

depend on the 

θ

 as shown in Fig. 8. On the other hand, the R is shown enough to have 

only a few cm. Thus, we decided tentatively that the R is 25mm and the 

θ

 is 60°. A 

kicked ball reaches a height of approximately 600mm. That actual performance is 
shown in Fig. 9. 

 

 

Fig. 7 Length of rotation axis R and angle 

θ

 of the chip kick device

 

(a) 

(b)

(c)

(d) 

pdftohtml_folder/2010_TDP_KIKS-html.html
background image

 

Fig. 8

 

Experimental results of chip-kick device 

 

Ball 

25mm

60°

45°

 
Ball 

25° 

 
Ball 

~600mm

~2000mm

 

Fig. 9 Specification and performance of actual chip-kick device 

pdftohtml_folder/2010_TDP_KIKS-html.html
background image

2.4   Dribbling device structure 

In previous robot, we have used the RE-max17 motor for the dribbling devices. 

But the motor did not have good enough performance for pass and shoot. So we tried 
to change that motor into RE-max24. The motor’s power has increased from 4W to 
10W. In addition, we just changed the dribble devices. Table I shows the performance 
of new dribbling device. The previous and new dribbling devices are also shown 
in Fig. 10

 

 

Table I. Characterizations of new and previous motor. 

Element

Motor 

New(Re-max 24) 

Previous(Re-max 17) 

Power 

10 Watt 

4 Watt 

Diameter of Roller 

~15mm 

~13mm 

Rotation 

Frequency(Roller) 

8800rpm 3900 

rpm 

   

 

(a) Previous dribbling device (CAD image)    (b) New dribbling device (CAD image) 

   

 

(c) New dribbling device (side view)              (d) New dribbling device (front view) 

Fig. 10 Previous and new dribbler device   

2.5      Detecting device for a ball 

Up to now, the IR-Sensor was only used to find a ball in our robot. So, we attached 

a new another IR-Sensor to check the position of the ball, and to enhance the 
performance of catching the ball. As the result, the robot came to check the difference 

pdftohtml_folder/2010_TDP_KIKS-html.html
background image

of the position between the ball and robot, and obtained the good performance for 
catching the ball. Attached new IR-Sensor is shown in Fig. 11. 

 

   

 

(a) IR-sensor             (b) Body with IR-sensor 

Fig. 11 Detecting device (IR-sensor) for a ball 

2.5   Electronic circuit for brushless DC motor. 

We decided to use brushless DC motor because it is becoming one of the standard 

equipment of the robots among the best teams in SSL. We replaced the motor to 
Maxon EC 45 flat from Maxon RE-max 24. The motor is popular in the best team. 
The motor’s power is more than six times compared with conventional RE-max24. 
Therefore, the gear ratio could change from 8:60 to 20:72. As the result, the machine 
was able to run more than 1.5 times faster than previous one. 

There are two sensors in the motor. That is, the encoder and the hall sensor built in 

the motor. E4P made by US DIGITAL was chosen as the encoder. Since its resolution 
is 1440 pulse per revolution, it came to control easier in detail. 

The Microchip dsPIC30F4012 was used for each motor’s control. The PICs were 

connected to the motor through FET drive circuit. Each PIC was commanded by 
SH2-7144 of Main MPU. 

 

         

 

(a) Brushless Motor                                  (b)Encoder 

 

 
 
 

Fig. 12 Brushless motor and encoder 

pdftohtml_folder/2010_TDP_KIKS-html.html
background image

           

 

(a) FET circuit                  (b) Control circuit 

Fig. 13 (a) FET circuit for motor drive unit and (b) its control circuit 

3    Conclusions 

We have improved the robots for SSL as well as last year. The performance of our 

robot is getting high over the year. Most of devices are hand made by students. Thus, 
the cost performance is very high in fact.   

We hope that our robots will perform better in this coming competition than that of 

last year. We will have a plan to join such competitions continuously in the future.   
 

References 

1.  Touko SUGIURA, Masato WATANABE and Kazuaki ITO: Practice of Creative Education 

Taken into Account the Continuous Participation to the RoboCup Small Size League and 
World Competition, Journal of Education in the Colleges of Technology, 

32

 (2009) 345. [in 

Japanese]