background image

KIKS 2010 Team Description

 

Ryuhei Sato

1

, Takato Horii

1

, Kenji Inukai

1

, Shoma Mizutani

1

Kosei Baba

1

, Masato Watanabe

1

, Kazuaki Ito

1

 and Toko Sugiura

 

1

 Toyota National College of Technology, 

Department of Electrical and Electronic engineering, 

2-1 Eisei-cho, Toyota Aichi, 471-8525, Japan 

 

sugi@toyota-ct.ac.jp 

URL

http://www.ee.toyota-ct.ac.jp/~masa/2010/kiks2.htm 

Abstract.

 This paper is used to qualify as participation to the RoboCup 2010 

small-size league (SSL) about team “KIKS”. Our robot is designed under the 
Rules 2010 in order to participate in the SSL competition held in Singapore. 
The overview for robots’ hardware of our team is described . 

Keywords: 

RoboCup, small-size league, brushless DC motor, motion control, 

IR-sensor. 

1   Introduction 

Main purpose of our participation to the RoboCup world competition is 

confirmation and evaluation of the results of the PBL (Project Based Learning) 
experiments. We have educated the creative minds of students using the robot contest 
held in our department of electrical and electronic engineering. For the RoboCup 
world competition, our team has participated for six years since 2004, continuously. 
We came in the top 8 in Graz 2009. Thus, since the aim will be higher, further 
improvements are also needed in this year. 

Recently, most of best top teams use the brushless DC motors. But we still use 

brushed one (REmax 24). If we can replace to the blushless one, the robots must have 
more torques and speeds. So, now we try to replace that and also review whole 
mechanical design. 

The main topics of developed system in 2010 are following term, 

  Enhancement of the performance of dribbling and kicking devices of the robot 

in SSL. 

  Evaluation of the performance of ring-wheels and chip-kick devices. 

  Development of the circuit for DC blush less motors. 

                                                           

 

pdftohtml_folder/2010_TDP_KIKS-html.html
background image

2      Development of new robots 

2.1   The entire structure design. 

At present time, we have changed three parts. 

1.

 

Replacement to brushless DC motors (Maxon EC45flat) from brushed one 
(Maxon REmax24). 

2.

 

Redesign of chip-kick device. 

3.

 

Whole mechanical redesign taken into account of maintenance. 

First, the motors which connect four ring-wheels were replaced to brushless motors 

(Maxon EC45flat). They were used pinion gear with 20 teethes and internal gear with 
72 teethes. That is, the reduction ratio is 1:3.6. The robot has not enough space to set 
the gear box. So, we had to redesign to take account of narrow space between motor’s 
axis and wheel’s that as shown in Fig. 1. 

 

Fig. 1 Ring-wheel and internal gear 

 

Second, the chip-kick devices were redesigned. The solenoid of chip-kick device 

was under a normal kick device for previous design. But the solenoid often 
electrically short out because of rubbing itself against floor. Thus, we replace the 
solenoid of chip-kick device on that of the normal kick device as shown in Fig. 2. As 
the results, we solved the problem mentioned above. Furthermore, because of large 
space between chip-kick device’s bar and solenoid, it could get more kick power due 
to the principle of leverage. In addition, the redesigning brought many advantages for 
robot performance, e.g., more precise pass by kicking the center of a ball. 

 

pdftohtml_folder/2010_TDP_KIKS-html.html
background image

 

Fig. 2 Chip-kick device 

 

Finally, whole mechanical structures were improved taken into account the 

maintenance. Our robot had many problems in play because of components from a lot 
of hand-made parts. At present, we replaced the base-plate to thick one and also made 
the dents on the plate. The wheel units and kick devises were embedded in the plate as 
shown in Fig. 3. As the results, the number of screws to fix on the body were able to 
decrease because of the dents were worked effectively as shock-absorber against the 
forces from various directions. If the robot is broken, it will be fixed up easier due to 
the geometric design. 

 

 

Fig. 3 Whole mechanical design 

pdftohtml_folder/2010_TDP_KIKS-html.html
background image

2.2   Evaluation of wheel structure. 

Robots could run faster than last year by replacing the motors. As the results, 

robots were required high performance for ring-wheels. So, we tried to improve the 
ring-wheel’s structure. We had tested some types of ring-wheels as shown in Fig. 
4(a)-(d). Th
e (a) is the present type which has thin single tire with every thin unit 
house. The (b) type has double small tires with every unit. The (c) and (d) types have 
thick small tires which made normal rubber and silicone rubber tube, respectively. 

             

 

(a) with single ring tires                (b) with double ring tires 

             

 

(c) with thick rubber ring tires                    (d) with thick silicone rubber ring tires 

Fig. 4 Various type of the wheels used for evaluation. 

 

Fig. 5 Average time to reach to 1[m/s] from static condition for the robot 

(a) 

(b)

(c)

(d) 

pdftohtml_folder/2010_TDP_KIKS-html.html
background image

 

Fig. 6 Average speed of the robot on the same condition 

The experimental results of their performance are shown in Fig. 5-Fig. 6. Figure 5 

shows the average time to reach to 1[m/s] from static condition. Figure 6 shows the 
average speed on the same condition. Summarizing the results of our analysis, the (a) 
type showed the most stable and best performance. The reason why the (a) type 
showed the better results than the other types is not clear. It might be depended on the 
number of unit houses. Anyway, we decided to use (a) type. 

 

2.3   Chip-kick device structure 

We tried to improve the chip-kick device to investigate the relation between the 

length of rotation axis and angle within the limits of the space. By determining the 
length R and angle 

θ

, respectively as shown in Fig. 7, we have measured a range of 

ball when the R and 

θ

 were changed. The result shows that a range of ball is strongly 

depend on the 

θ

 as shown in Fig. 8. On the other hand, the R is shown enough to have 

only a few cm. Thus, we decided tentatively that the R is 25mm and the 

θ

 is 60°. A 

kicked ball reaches a height of approximately 600mm. That actual performance is 
shown in Fig. 9. 

 

 

Fig. 7 Length of rotation axis R and angle 

θ

 of the chip kick device

 

(a) 

(b)

(c)

(d) 

pdftohtml_folder/2010_TDP_KIKS-html.html
background image

 

Fig. 8

 

Experimental results of chip-kick device 

 

Ball 

25mm

60°

45°

 
Ball 

25° 

 
Ball 

~600mm

~2000mm

 

Fig. 9 Specification and performance of actual chip-kick device 

pdftohtml_folder/2010_TDP_KIKS-html.html